Novel compound heterozygous mutations in the GPR98 (USH2C) gene identified by whole exome sequencing in a Moroccan deaf family

Abstract

In the present work, we identified two novel compound heterozygote mutations in the GPR98 (G protein-coupled receptor 98) gene causing Usher syndrome. Whole-exome sequencing was performed to study the genetic causes of Usher syndrome in a Moroccan family with three affected siblings. We identify two novel compound heterozygote mutations (c.1054C > A, c.16544delT) in the GPR98 gene in the three affected siblings carrying post-linguale bilateral moderate hearing loss with normal vestibular functions and before installing visual disturbances. This is the first time that mutations in the GPR98 gene are described in the Moroccan deaf patients.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Skradski SL, Clark AM, Jiang H et al (2001) A novel gene causing a mendelian audiogenic mouse epilepsy. Neuron 31:537–544. doi:10.1016/S0896-6273(01)00397-X

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    McMillan DR, Kayes-Wandover KM, Richardson JA, White PC (2002) Very large G protein-coupled receptor-1, the largest known cell surface protein, is highly expressed in the developing central nervous system. J Biol Chem 277:785–792. doi:10.1074/jbc.M108929200

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Zou J, Mathur PD, Zheng T et al (2015) Individual USH2 proteins make distinct contributions to the ankle link complex during development of the mouse cochlear stereociliary bundle. Hum Mol Genet. doi:10.1093/hmg/ddv398

    Google Scholar 

  4. 4.

    Weston MD, Luijendijk MWJ, Humphrey KD et al (2004) Mutations in the VLGR1 gene implicate G-protein signaling in the pathogenesis of usher syndrome type II. Am J Hum Genet 74:357–366

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Kimberling WJ, Hildebrand MS, Shearer AE et al (2010) Frequency of Usher syndrome in two pediatric populations: implications for genetic screening of deaf and hard of hearing children. Genet Med 12:512–516. doi:10.1097/GIM.0b013e3181e5afb8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Mathur P, Yang J (2015) Usher syndrome: hearing loss, retinal degeneration and associated abnormalities. Biochim Biophys Acta BBA-Mol Basis Dis 1852:406–420. doi:10.1016/j.bbadis.2014.11.020

    CAS  Article  Google Scholar 

  7. 7.

    Bonnet C, El-Amraoui A (2012) Usher syndrome (sensorineural deafness and retinitis pigmentosa): pathogenesis, molecular diagnosis and therapeutic approaches. Curr Opin Neurol 25:42–49. doi:10.1097/WCO.0b013e32834ef8b2

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Abidi O, Boulouiz R, Nahili H et al (2007) GJB2 (connexin 26) gene mutations in Moroccan patients with autosomal recessive non-syndromic hearing loss and carrier frequency of the common GJB2-35delG mutation. Int J Pediatr Otorhinolaryngol 71:1239–1245. doi:10.1016/j.ijporl.2007.04.019

    Article  PubMed  Google Scholar 

  9. 9.

    Charif M, Bounaceur S, Abidi O et al (2012) The c.242G > A mutation in LRTOMT gene is responsible for a high prevalence of deafness in the Moroccan population. Mol Biol Rep 39:11011–11016. doi:10.1007/s11033-012-2003-3

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Bakhchane A, Charif M, Salime S et al (2015) Recessive TBC1D24 mutations are frequent in Moroccan non-syndromic hearing loss pedigrees. PLoS ONE. doi:10.1371/journal.pone.0138072

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Bakhchane A, Charoute H, Nahili H et al (2015) A novel mutation in the TMC1 gene causes non-syndromic hearing loss in a Moroccan family. Gene 574:28–33. doi:10.1016/j.gene.2015.07.075

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Sim N-L, Kumar P, Hu J et al (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 40:W452–W457. doi:10.1093/nar/gks539

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249. doi:10.1038/nmeth0410-248

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Choi Y, Sims GE, Murphy S et al (2012) Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS ONE. doi:10.1371/journal.pone.0046688

    Google Scholar 

  15. 15.

    Folkman L, Yang Y, Li Z et al (2015) DDIG-in: detecting disease-causing genetic variations due to frameshifting indels and nonsense mutations employing sequence and structural properties at nucleotide and protein levels. Bioinformatics (Oxf Engl) 31:1599–1606. doi:10.1093/bioinformatics/btu862

    CAS  Article  Google Scholar 

  16. 16.

    SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. http://www.ncbi.nlm.nih.gov/pubmed/24782522. Accessed 6 Mar 2016

  17. 17.

    Schymkowitz JWH, Rousseau F, Martins IC et al (2005) Prediction of water and metal binding sites and their affinities by using the Fold-X force field. Proc Natl Acad Sci USA 102:10147–10152. doi:10.1073/pnas.0501980102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Krieger E, Vriend G (2014) YASARA View—molecular graphics for all devices - from smartphones to workstations. Bioinformatics (Oxf Engl) 30:2981–2982. doi:10.1093/bioinformatics/btu426

    CAS  Article  Google Scholar 

  19. 19.

    Laimer J, Hiebl-Flach J, Lengauer D, Lackner P (2016) MAESTROweb: a web server for structure-based protein stability prediction. Bioinformatics (Oxf Engl). doi:10.1093/bioinformatics/btv769

    Google Scholar 

  20. 20.

    Parthiban V, Gromiha MM, Schomburg D (2006) CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res 34:W239–W242. doi:10.1093/nar/gkl190

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Worth CL, Preissner R, Blundell TL (2011) SDM–a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res 39:W215–W222. doi:10.1093/nar/gkr363

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Mill NJ et al (2010) An update on the genetics of usher syndrome, an update on the genetics of usher syndrome. J Ophthalmol 2011:e417217. doi:10.1155/2011/417217

    Google Scholar 

  23. 23.

    García-García G, Besnard T, Baux D et al (2013) The contribution of GPR98 and DFNB31 genes to a Spanish usher syndrome type 2 cohort. Mol Vis 19:367–373

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Le Quesne Stabej P, Saihan Z, Rangesh N et al (2012) Comprehensive sequence analysis of nine usher syndrome genes in the UK National Collaborative Usher Study. J Med Genet 49:27–36. doi:10.1136/jmedgenet-2011-100468

    Article  PubMed  Google Scholar 

  25. 25.

    Bonnet C, Grati M, Marlin S et al (2011) Complete exon sequencing of all known Usher syndrome genes greatly improves molecular diagnosis. Orphanet J Rare Dis 6:21. doi:10.1186/1750-1172-6-21

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Jiang L, Liang X, Li Y et al (2015) Comprehensive molecular diagnosis of 67 Chinese usher syndrome probands: high rate of ethnicity specific mutations in Chinese USH patients. Orphanet J Rare Dis. doi:10.1186/s13023-015-0329-3

    Google Scholar 

  27. 27.

    Besnard T, Vaché C, Baux D et al (2012) Non-USH2A mutations in USH2 patients. Hum Mutat 33:504–510. doi:10.1002/humu.22004

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Abadie C, Blanchet C, Baux D et al (2012) Audiological findings in 100 USH2 patients. Clin Genet 82:433–438. doi:10.1111/j.1399-0004.2011.01772.x

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Nikkila H, McMillan DR, Nunez BS et al (2000) Sequence similarities between a novel putative g protein-coupled receptor and Na+/Ca2+ exchangers define a cation binding domain. Mol Endocrinol 14:1351–1364. doi:10.1210/mend.14.9.0511

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Ammar-Khodja F, Bonnet C, Dahmani M et al (2015) Diversity of the causal genes in hearing impaired Algerian individuals identified by whole exome sequencing. Mol Genet Genom Med 3:189–196. doi:10.1002/mgg3.131

    CAS  Article  Google Scholar 

  31. 31.

    Ebermann I, Wiesen MHJ, Zrenner E et al (2009) GPR98 mutations cause usher syndrome type 2 in males. J Med Genet 46:277–280. doi:10.1136/jmg.2008.059626

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Ebermann I, Phillips JB, Liebau MC et al (2010) PDZD7 is a modifier of retinal disease and a contributor to digenic usher syndrome. J Clin Invest 120:1812–1823. doi:10.1172/JCI39715

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Hmani-Aifa M, Benzina Z, Zulfiqar F et al (2008) Identification of two new mutations in the GPR98 and the PDE6B genes segregating in a Tunisian family. Eur J Hum Genet 17:474–482. doi:10.1038/ejhg.2008.167

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Hilgert N, Kahrizi K, Najmabadi H et al (2009) A large deletion in GPR98 causes type IIC Usher syndrome in male and female patients of an Iranian family. J Med Genet 46:272–276. doi:10.1136/jmg.2008.060947

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Kahrizi K, Bazazzadegan N, Jamali L et al (2014) A novel mutation of the USH2C (GPR98) gene in an Iranian family with Usher syndrome type II. J Genet 93:837–841

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are indebted to the family that contributed to this study. This work was supported by Pasteur Institute of Morocco (IPM) and a collaborative project between the French National Institute of Health and Medical Research (INSERM) and the Moroccan National Centre for Scientific and Technical Research (CNRST).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdelhamid Barakat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 784 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bousfiha, A., Bakhchane, A., Charoute, H. et al. Novel compound heterozygous mutations in the GPR98 (USH2C) gene identified by whole exome sequencing in a Moroccan deaf family. Mol Biol Rep 44, 429–434 (2017). https://doi.org/10.1007/s11033-017-4129-9

Download citation

Keywords

  • Usher syndrome
  • Hearing loss
  • Retinitis pigmentosa
  • GPR98 gene
  • Mutation
  • Moroccan family