Molecular Biology Reports

, Volume 44, Issue 5, pp 429–434 | Cite as

Novel compound heterozygous mutations in the GPR98 (USH2C) gene identified by whole exome sequencing in a Moroccan deaf family

  • Amale Bousfiha
  • Amina Bakhchane
  • Hicham Charoute
  • Mustapha Detsouli
  • Hassan Rouba
  • Majida Charif
  • Guy Lenaers
  • Abdelhamid BarakatEmail author
Original Article


In the present work, we identified two novel compound heterozygote mutations in the GPR98 (G protein-coupled receptor 98) gene causing Usher syndrome. Whole-exome sequencing was performed to study the genetic causes of Usher syndrome in a Moroccan family with three affected siblings. We identify two novel compound heterozygote mutations (c.1054C > A, c.16544delT) in the GPR98 gene in the three affected siblings carrying post-linguale bilateral moderate hearing loss with normal vestibular functions and before installing visual disturbances. This is the first time that mutations in the GPR98 gene are described in the Moroccan deaf patients.


Usher syndrome Hearing loss Retinitis pigmentosa GPR98 gene Mutation Moroccan family 



Authors are indebted to the family that contributed to this study. This work was supported by Pasteur Institute of Morocco (IPM) and a collaborative project between the French National Institute of Health and Medical Research (INSERM) and the Moroccan National Centre for Scientific and Technical Research (CNRST).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11033_2017_4129_MOESM1_ESM.pdf (784 kb)
Supplementary material 1 (PDF 784 KB)


  1. 1.
    Skradski SL, Clark AM, Jiang H et al (2001) A novel gene causing a mendelian audiogenic mouse epilepsy. Neuron 31:537–544. doi: 10.1016/S0896-6273(01)00397-X CrossRefPubMedGoogle Scholar
  2. 2.
    McMillan DR, Kayes-Wandover KM, Richardson JA, White PC (2002) Very large G protein-coupled receptor-1, the largest known cell surface protein, is highly expressed in the developing central nervous system. J Biol Chem 277:785–792. doi: 10.1074/jbc.M108929200 CrossRefPubMedGoogle Scholar
  3. 3.
    Zou J, Mathur PD, Zheng T et al (2015) Individual USH2 proteins make distinct contributions to the ankle link complex during development of the mouse cochlear stereociliary bundle. Hum Mol Genet. doi: 10.1093/hmg/ddv398 Google Scholar
  4. 4.
    Weston MD, Luijendijk MWJ, Humphrey KD et al (2004) Mutations in the VLGR1 gene implicate G-protein signaling in the pathogenesis of usher syndrome type II. Am J Hum Genet 74:357–366CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kimberling WJ, Hildebrand MS, Shearer AE et al (2010) Frequency of Usher syndrome in two pediatric populations: implications for genetic screening of deaf and hard of hearing children. Genet Med 12:512–516. doi: 10.1097/GIM.0b013e3181e5afb8 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mathur P, Yang J (2015) Usher syndrome: hearing loss, retinal degeneration and associated abnormalities. Biochim Biophys Acta BBA-Mol Basis Dis 1852:406–420. doi: 10.1016/j.bbadis.2014.11.020 CrossRefGoogle Scholar
  7. 7.
    Bonnet C, El-Amraoui A (2012) Usher syndrome (sensorineural deafness and retinitis pigmentosa): pathogenesis, molecular diagnosis and therapeutic approaches. Curr Opin Neurol 25:42–49. doi: 10.1097/WCO.0b013e32834ef8b2 CrossRefPubMedGoogle Scholar
  8. 8.
    Abidi O, Boulouiz R, Nahili H et al (2007) GJB2 (connexin 26) gene mutations in Moroccan patients with autosomal recessive non-syndromic hearing loss and carrier frequency of the common GJB2-35delG mutation. Int J Pediatr Otorhinolaryngol 71:1239–1245. doi: 10.1016/j.ijporl.2007.04.019 CrossRefPubMedGoogle Scholar
  9. 9.
    Charif M, Bounaceur S, Abidi O et al (2012) The c.242G > A mutation in LRTOMT gene is responsible for a high prevalence of deafness in the Moroccan population. Mol Biol Rep 39:11011–11016. doi: 10.1007/s11033-012-2003-3 CrossRefPubMedGoogle Scholar
  10. 10.
    Bakhchane A, Charif M, Salime S et al (2015) Recessive TBC1D24 mutations are frequent in Moroccan non-syndromic hearing loss pedigrees. PLoS ONE. doi: 10.1371/journal.pone.0138072 PubMedPubMedCentralGoogle Scholar
  11. 11.
    Bakhchane A, Charoute H, Nahili H et al (2015) A novel mutation in the TMC1 gene causes non-syndromic hearing loss in a Moroccan family. Gene 574:28–33. doi: 10.1016/j.gene.2015.07.075 CrossRefPubMedGoogle Scholar
  12. 12.
    Sim N-L, Kumar P, Hu J et al (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 40:W452–W457. doi: 10.1093/nar/gks539 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249. doi: 10.1038/nmeth0410-248 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Choi Y, Sims GE, Murphy S et al (2012) Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS ONE. doi: 10.1371/journal.pone.0046688 Google Scholar
  15. 15.
    Folkman L, Yang Y, Li Z et al (2015) DDIG-in: detecting disease-causing genetic variations due to frameshifting indels and nonsense mutations employing sequence and structural properties at nucleotide and protein levels. Bioinformatics (Oxf Engl) 31:1599–1606. doi: 10.1093/bioinformatics/btu862 CrossRefGoogle Scholar
  16. 16.
    SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Accessed 6 Mar 2016
  17. 17.
    Schymkowitz JWH, Rousseau F, Martins IC et al (2005) Prediction of water and metal binding sites and their affinities by using the Fold-X force field. Proc Natl Acad Sci USA 102:10147–10152. doi: 10.1073/pnas.0501980102 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Krieger E, Vriend G (2014) YASARA View—molecular graphics for all devices - from smartphones to workstations. Bioinformatics (Oxf Engl) 30:2981–2982. doi: 10.1093/bioinformatics/btu426 CrossRefGoogle Scholar
  19. 19.
    Laimer J, Hiebl-Flach J, Lengauer D, Lackner P (2016) MAESTROweb: a web server for structure-based protein stability prediction. Bioinformatics (Oxf Engl). doi: 10.1093/bioinformatics/btv769 Google Scholar
  20. 20.
    Parthiban V, Gromiha MM, Schomburg D (2006) CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res 34:W239–W242. doi: 10.1093/nar/gkl190 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Worth CL, Preissner R, Blundell TL (2011) SDM–a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res 39:W215–W222. doi: 10.1093/nar/gkr363 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mill NJ et al (2010) An update on the genetics of usher syndrome, an update on the genetics of usher syndrome. J Ophthalmol 2011:e417217. doi: 10.1155/2011/417217 Google Scholar
  23. 23.
    García-García G, Besnard T, Baux D et al (2013) The contribution of GPR98 and DFNB31 genes to a Spanish usher syndrome type 2 cohort. Mol Vis 19:367–373PubMedPubMedCentralGoogle Scholar
  24. 24.
    Le Quesne Stabej P, Saihan Z, Rangesh N et al (2012) Comprehensive sequence analysis of nine usher syndrome genes in the UK National Collaborative Usher Study. J Med Genet 49:27–36. doi: 10.1136/jmedgenet-2011-100468 CrossRefPubMedGoogle Scholar
  25. 25.
    Bonnet C, Grati M, Marlin S et al (2011) Complete exon sequencing of all known Usher syndrome genes greatly improves molecular diagnosis. Orphanet J Rare Dis 6:21. doi: 10.1186/1750-1172-6-21 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jiang L, Liang X, Li Y et al (2015) Comprehensive molecular diagnosis of 67 Chinese usher syndrome probands: high rate of ethnicity specific mutations in Chinese USH patients. Orphanet J Rare Dis. doi: 10.1186/s13023-015-0329-3 Google Scholar
  27. 27.
    Besnard T, Vaché C, Baux D et al (2012) Non-USH2A mutations in USH2 patients. Hum Mutat 33:504–510. doi: 10.1002/humu.22004 CrossRefPubMedGoogle Scholar
  28. 28.
    Abadie C, Blanchet C, Baux D et al (2012) Audiological findings in 100 USH2 patients. Clin Genet 82:433–438. doi: 10.1111/j.1399-0004.2011.01772.x CrossRefPubMedGoogle Scholar
  29. 29.
    Nikkila H, McMillan DR, Nunez BS et al (2000) Sequence similarities between a novel putative g protein-coupled receptor and Na+/Ca2+ exchangers define a cation binding domain. Mol Endocrinol 14:1351–1364. doi: 10.1210/mend.14.9.0511 CrossRefPubMedGoogle Scholar
  30. 30.
    Ammar-Khodja F, Bonnet C, Dahmani M et al (2015) Diversity of the causal genes in hearing impaired Algerian individuals identified by whole exome sequencing. Mol Genet Genom Med 3:189–196. doi: 10.1002/mgg3.131 CrossRefGoogle Scholar
  31. 31.
    Ebermann I, Wiesen MHJ, Zrenner E et al (2009) GPR98 mutations cause usher syndrome type 2 in males. J Med Genet 46:277–280. doi: 10.1136/jmg.2008.059626 CrossRefPubMedGoogle Scholar
  32. 32.
    Ebermann I, Phillips JB, Liebau MC et al (2010) PDZD7 is a modifier of retinal disease and a contributor to digenic usher syndrome. J Clin Invest 120:1812–1823. doi: 10.1172/JCI39715 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hmani-Aifa M, Benzina Z, Zulfiqar F et al (2008) Identification of two new mutations in the GPR98 and the PDE6B genes segregating in a Tunisian family. Eur J Hum Genet 17:474–482. doi: 10.1038/ejhg.2008.167 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hilgert N, Kahrizi K, Najmabadi H et al (2009) A large deletion in GPR98 causes type IIC Usher syndrome in male and female patients of an Iranian family. J Med Genet 46:272–276. doi: 10.1136/jmg.2008.060947 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kahrizi K, Bazazzadegan N, Jamali L et al (2014) A novel mutation of the USH2C (GPR98) gene in an Iranian family with Usher syndrome type II. J Genet 93:837–841CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Amale Bousfiha
    • 1
    • 2
  • Amina Bakhchane
    • 1
  • Hicham Charoute
    • 1
  • Mustapha Detsouli
    • 1
  • Hassan Rouba
    • 1
  • Majida Charif
    • 3
  • Guy Lenaers
    • 3
  • Abdelhamid Barakat
    • 1
    Email author
  1. 1.Human Molecular Genetics LaboratoryInstitut Pasteur du MarocCasablancaMorocco
  2. 2.Laboratoire des Sciences Biologiques, Filière Technique de SantéInstitution Supérieure des Professions Infirmières et Techniques de Santé (ISPITS)CasablancaMorocco
  3. 3.PREMMI, Mitochondrial Medicine Research CentreUniversité d’Angers, CHU Bât IRIS/IBSAngers Cedex 9France

Personalised recommendations