Combination treatment with dendrosomal nanocurcumin and doxorubicin improves anticancer effects on breast cancer cells through modulating CXCR4/NF-κB/Smo regulatory network


Despite advantageous antitumor properties of doxorubicin, the considerable cytotoxicity of this chemotherapeutic agent has made it necessary to develop combination treatment strategies. The aim of the current study was to investigate the possible synergism between dendrosomal nanocurcumin (DNC) and doxorubicin in eliciting anticancer effects on MDA-MB-231 metastatic breast cancer cells. The expression levels of CXCL12/CXCR4 axis and Hedgehog pathway genes were evaluated in patient-derived breast carcinoma tissues by qRT-PCR. MTT assay, Annexin V-FITC staining followed by flowcytomety and wound healing assay were used to measure the effects caused by DNC and doxorubicin, alone and in combination, on the viability, apoptosis induction, and migration of MDA-MB-231 cells, respectively. Also, qRT-PCR was exploited to analyze the expression of Smo, NF-κB and CXCR4 in cancer cells. Our results revealed that combination treatment with DNC and doxorubicin leads to significantly decreased viability, increased apoptosis, and reduced migration of breast cancer cells compared with using each drug alone. Also, combination treatment is more efficient that single treatment in reducing the expression levels of NF-κB and Smo transcripts. Our findings provide convincing support for the notion that DNC could synergistically enhance the anticancer effects of doxorubicin on metastatic breast cancer cells by improving its anti-proliferative, pro-apoptotic, and anti-migratory activities. This may be mediated, in part, by downregulating CXCR4, NF-κB, and Smo genes. Overall, the findings of the current study suggest that DNC might be used as a synergistic agent for enhancing therapeutic efficiency and reducing toxic effects of doxorubicin on breast cancer cells.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Ferlay J, Soerjomataram I, Ervik M (2012) GLOBOCAN, cancer incidence and mortality worldwide: IARC cancer base no. 11 [Internet]. International Agency for Research on Cancer, Lyon; 2013

    Google Scholar 

  2. 2.

    Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65(2):157–170

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23(1 A):363–398

    CAS  PubMed  Google Scholar 

  4. 4.

    Arbiser JL, Klauber N, Rohan R, Van Leeuwen R, Huang M-T, Fisher C, Flynn E, Byers HR (1998) Curcumin is an in vivo inhibitor of angiogenesis. Mol Med 4(6):376

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Lin YG, Kunnumakkara AB, Nair A, Merritt WM, Han LY, Armaiz -Pena GN, Kamat AA, Spannuth WA, Gershenson DM, Lutgendorf SK (2007) Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor- κ B pathway. Clin Cancer Res 13(11):3423–3430

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Dorai T, Cao YC, Dorai B, Buttyan R, Katz AE (2001) Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. Prostate 47(4):293–303

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Kunnumakkara AB, Anand P, Aggarwal BB (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 269(2):199–225

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Aggarwal S, Ichikawa H, Takada Y, Sandur SK, Shishodia S, Aggarwal BB (2006) Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of I κ B α kinase and Akt activation. Mol Pharmacol 69(1):195–206

    CAS  PubMed  Google Scholar 

  9. 9.

    Menon LG, Kuttan R, Kuttan G (1999) Anti-metastatic activity of curcumin and catechin. Cancer Lett 141(1):159–165

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Sen GS, Mohanty S, Hossain DMS, Bhattacharyya S, Banerjee S, Chakraborty J, Saha S, Ray P, Bhattacharjee P, Mandal D (2011) Curcumin enhances the efficacy of chemotherapy by tailoring p65NFκB-p300 cross-talk in favor of p53-p300 in breast cancer. J Biol Chem 286(49):42232–42247

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Chen W-C, Lai Y-A, Lin Y-C, Ma J-W, Huang L-F, Yang N-S, Ho C-T, Kuo S-C, Way T-D (2013) Curcumin suppresses doxorubicin-induced epithelial–mesenchymal transition via the inhibition of TGF - β and PI3K/AKT signaling pathways in triple-negative breast cancer cells. J Agric Food Chem 61(48):11817–11824

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Notarbartolo M, Poma P, Perri D, Dusonchet L, Cervello M, D’Alessandro N (2005) Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kB activation levels and in IAP gene expression. Cancer Lett 224(1):53–65

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Van’t Land B, Blijlevens N, Marteijn J, Timal S, Donnelly J, de Witte T, M’rabet L (2004) Role of curcumin and the inhibition of NF-κB in the onset of chemotherapy-induced mucosal barrier injury. Leukemia 18(2):276–284

    Article  PubMed  Google Scholar 

  14. 14.

    Xiaoling M, Jing Z, Fang X, Liangdan T (2010) Curcumin inhibits invasion and metastasis in the human ovarian cancer cells SKOV3 by CXCL12–CXCR4 axis. Afr J Biotechnol 9(48):8230–8234

    Article  Google Scholar 

  15. 15.

    Elamin MH, Shinwari Z, Hendrayani SF, Al-Hindi H, Al- Shail E, Al- kofide A, Aboussekhra A (2010) Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells. Mol Carcinog 49(3):302–314

    CAS  PubMed  Google Scholar 

  16. 16.

    Lian N, Jiang Y, Zhang F, Jin H, Lu C, Wu X, Lu Y, Zheng S (2015) Curcumin regulates cell fate and metabolism by inhibiting hedgehog signaling in hepatic stellate cells. Lab Invest 95(7):790–803

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Sun X-D, Liu X-E, Huang D-S (2013) Curcumin reverses the epithelial-mesenchymal transition of pancreatic cancer cells by inhibiting the Hedgehog signaling pathway. Oncol Rep 29(6):2401–2407

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A, Maitra A (2007) Polymeric nanoparticle -encapsulated curcumin (” nanocurcumin “): a novel strategy for human cancer therapy. J Nanobiotechnol 5(1):1

    Article  Google Scholar 

  19. 19.

    Siddiqui IA, Adhami VM, Chamcheu J, Mukhtar H (2012) Impact of nanotechnology in cancer: emphasis on nanochemoprevention. Int J Nanomed 7:591–605

    CAS  Google Scholar 

  20. 20.

    Ghalandarlaki N, Alizadeh AM, Ashkani-Esfahani S (2014) Nanotechnology-applied curcumin for different diseases therapy. BioMed Res Int. doi:10.1155/2014/394264

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Sun M, Su X, Ding B, He X, Liu X, Yu A, Lou H, Zhai G (2012) Advances in nanotechnology-based delivery systems for curcumin. Nanomedicine 7(7):1085–1100

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Sarbolouki MN, Sadeghizadeh M, Yaghoobi MM, Karami A, Lohrasbi T (2000) Dendrosomes: a novel family of vehicles for transfection and therapy. J Chem Technol Biotechnol 75(10):919–922

    CAS  Article  Google Scholar 

  23. 23.

    Mirgani MT, Isacchi B, Sadeghizadeh M, Marra F, Bilia AR, Mowla SJ, Najafi F, Babaei E (2014) Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR -145 activation in U87MG glioblastoma cells. Int J Nanomed 9(1):403–417

    Google Scholar 

  24. 24.

    Zamani M, Sadeghizadeh M, Behmanesh M, Najafi F (2015) Dendrosomal curcumin increases expression of the long non-coding RNA gene MEG3 via up-regulation of epi-miRs in hepatocellular cancer. Phytomedicine 22(10):961–967

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Montazeri M, Sadeghizadeh M, Pilehvar-Soltanahmadi Y, Zarghami F, Khodi S, Mohaghegh M, Zarghami N (2016) Dendrosomal curcumin nanoformulation modulate apoptosis-related genes and protein expression in hepatocarcinoma cell lines. Int J Pharm 509(1–2):244–254

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Chamani F, Sadeghizadeh M, Masoumi M, Babashah S (2016) Evaluation of MiR-34 family and DNA methyltransferases 1, 3 A, 3B gene expression levels in hepatocellular carcinoma following treatment with dendrosomal nanocurcumin. Asian Pac J Cancer Prev 17(S3):219–224

    Article  PubMed  Google Scholar 

  27. 27.

    Keshavarz R, Bakhshinejad B, Babashah S, Baghi N, Sadeghizadeh M (2016) Dendrosomal nanocurcumin and p53 overexpression synergistically trigger apoptosis in glioblastoma cells. Iran J Basic. Med Sci 19(12):1353–1362. doi:10.22038/ijbms.2016.7923

    Google Scholar 

  28. 28.

    Alizadeh AM, Khaniki M, Azizian S, Mohaghgheghi MA, Sadeghizadeh M, Najafi F (2012) Chemoprevention of azoxymethane -initiated colon cancer in rat by using a novel polymeric nanocarrier –curcumin. Eur J Pharmacol 689(1):226–232

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Babaei E, Sadeghizadeh M, Hassan ZM, Feizi MAH, Najafi F, Hashemi SM (2012) Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo. Int Immunopharmacol 12(1):226–234

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Mohajeri M, Sadeghizadeh M, Najafi F, Javan M (2015) Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair. Neuropharmacology 99:156–167

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Farhangi B, Alizadeh AM, Khodayari H, Khodayari S, Dehghan MJ, Khori V, Heidarzadeh A, Khaniki M, Sadeghiezadeh M, Najafi F (2015) Protective effects of dendrosomal curcumin on an animal metastatic breast tumor. Eur J Pharmacol 758:188–196

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Malich G, Markovic B, Winder C (1997) The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicology 124(3):179–192

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Cagel M, Grotz E, Bernabeu E, Moretton MA, Chiappetta DA (2016) Doxorubicin: nanotechnological overviews from bench to bedside. Drug Discov Today. doi:10.1016/j.drudis.2016.11.005

    PubMed  Google Scholar 

  35. 35.

    Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer cell 6(1):17–32

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56

    Article  PubMed  Google Scholar 

  37. 37.

    Schmid BC, Rudas M, Rezniczek GA, Leodolter S, Zeillinger R (2004) CXCR4 is expressed in ductal carcinoma in situ of the breast and in atypical ductal hyperplasia. Breast Cancer Res Treat 84(3):247–250

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Hinton CV, Avraham S, Avraham HK (2010) Role of the CXCR4/CXCL12 signaling axis in breast cancer metastasis to the brain. Clin Exp Metastasis 27(2):97–105

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Yoo YA, Kang MH, Lee HJ, Kim B-h, Park JK, Kim HK, Kim JS, Oh SC (2011) Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP -9 pathway in gastric cancer. Cancer Res 71(22):7061–7070

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Liao X, Siu MK, Au CW, Wong ES, Chan HY, Ip PP, Ngan HY, Cheung AN (2009) Aberrant activation of hedgehog signaling pathway in ovarian cancers: effect on prognosis, cell invasion and differentiation. Carcinogenesis 30(1):131–140

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, Isaacs JT, Berman DM, Beachy PA (2004) Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431(7009):707–712

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Chen J-S, Huang X-h, Wang Q, Huang J-Q, Zhang L-j, Chen X-L, Lei J, Cheng Z-X (2012) Sonic Hedgehog signaling pathway induces cell migration and invasion through focal adhesion kinase/AKT signaling–mediated activation of matrix metalloproteinase (MMP)-2 and MMP-9 in liver cancer. Carcinogenesis. doi:10.1093/carcin/bgs274

    Google Scholar 

  43. 43.

    Yang L, Xie G, Fan Q, Xie J (2010) Activation of the hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene 29(4):469–481

    Article  PubMed  Google Scholar 

  44. 44.

    Kubo M, Nakamura M, Tasaki A, Yamanaka N, Nakashima H, Nomura M, Kuroki S, Katano M (2004) Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 64(17):6071–6074

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Anto RJ, Mukhopadhyay A, Denning K, Aggarwal BB (2002) Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis 23(1):143–150

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Woo J-H, Kim Y-H, Choi Y-J, Kim D-G, Lee K-S, Bae JH, Chang J-S, Jeong Y-J, Lee YH, Park J-W (2003) Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl -XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis 24(7):1199–1208

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Takeichi M (1990) Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem 59(1):237–252

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA (2007) A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res 13(23):7003–7011

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Singh AP, Arora S, Bhardwaj A, Srivastava SK, Kadakia MP, Wang B, Grizzle WE, Owen LB, Singh S (2012) CXCL12/CXCR4 signaling axis induces SHH expression in pancreatic cancer cells via ERK-and Akt-mediated activation of NF-κB: implications for bidirectional tumor-stromal interactions. J Biol Chem. doi:10.1074/jbc.M112.409581

    Google Scholar 

  50. 50.

    Es- haghi M, Soltanian S, Dehghani H (2016) Perspective: cooperation of Nanog, NF-κΒ, and CXCR4 in a regulatory network for directed migration of cancer stem cells. Tumor Biol 37(2):1559–1565

    CAS  Article  Google Scholar 

  51. 51.

    Bottero V, Busuttil V, Loubat A, Magné N, Fischel J-L, Milano G, Peyron J-F (2001) Activation of nuclear factor κ B through the IKK complex by the topoisomerase poisons SN38 and doxorubicin A brake to apoptosis in HeLa human carcinoma cells. Cancer Res 61(21):7785–7791

    CAS  PubMed  Google Scholar 

  52. 52.

    Wang C-Y, Mayo MW, Baldwin AS Jr (1996) TNF -and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kB. Science 274(5288):784

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Wang C-Y, Cusack JC, Liu R, Baldwin AS (1999) Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-κB. Nat Med 5(4):412–417

    Article  PubMed  Google Scholar 

Download references


This work was supported by a research grant from Tarbiat Modares University.

Author information



Corresponding author

Correspondence to Sadegh Babashah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahjoub, M.A., Bakhshinejad, B., Sadeghizadeh, M. et al. Combination treatment with dendrosomal nanocurcumin and doxorubicin improves anticancer effects on breast cancer cells through modulating CXCR4/NF-κB/Smo regulatory network. Mol Biol Rep 44, 341–351 (2017).

Download citation


  • Breast cancer
  • Combination treatment
  • Dendrosomal nanocurcumin
  • Doxorubicin
  • Synergism