Skip to main content
Log in

MiR-9 promotes osteoblast differentiation of mesenchymal stem cells by inhibiting DKK1 gene expression

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the role of miR-9 and its mechanism on the osteoblast differentiation of mesenchymal stem cells. Real-time PCR and western blotting were used to study gene expression. Assay of Alkaline phosphatase activity and alizarin red staining were used to examine osteoblast differentiation. Transfection of miR-9 mimics or lent-shmiR-9 was used to modulate the level of miR-9 in C2C12. Overexpression of miR-9 in C2C12 cells stimulated alkaline phosphatase activity and osteoblast mineralization, as well as the expression of osteoblast marker genes Col I, Ocn and Bsp. Gene silencing of miR-9 in C2C12 resulted in the suppression of alkaline phosphatase activity and osteoblast mineralization, as well as the expression of Col I, Ocn and Bsp. DKK1 mRNA was not affected by miR-9 overexpression, however, DKK1 protein was significantly decreased. Moreover, DKK1 3′-UTR mediated transcriptional luciferase activity was also significantly suppressed by miR-9 overexpression. DKK1 mRNA was not affected by miR-9 gene silencing, however, DKK1 protein was significantly stimulated. Moreover, DKK1 3′-UTR mediated transcriptional luciferase activity was significantly stimulated by miR-9 gene silencing, and suppressed by miR-9 overexpression, however, DKK1 3′-UTR mutant mediated luciferase activity was unaffected. The siRNA derived gene silencing of DKK1 blocked the inhibiting effect of shmiR-9 on the expression of alkaline phosphatase; and blocked the inhibiting effect of shmiR-9 on the expression of ColI, Ocn and Bsp. MiR-9 promotes osteoblast differentiation of mesenchymal cell C2C12 by suppressing the gene expression of DKK1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ross PD, Davis JW, Vogel JM, Wasnich RD (1990) A critical review of bone mass and the risk of fractures in osteoporosis. Calcif Tissue Int 46:149–161

    Article  CAS  PubMed  Google Scholar 

  2. Blagojevic M, Jinks C, Jeffery A, Jordan KP (2010) Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthr Cartil 18:24–33. doi:10.1016/j.joca.2009.08.010S1063-4584(09)00225-8

    Article  CAS  PubMed  Google Scholar 

  3. Dong S, Yang B, Guo H, Kang F (2012) MicroRNAs regulate osteogenesis and chondrogenesis. Biochem Biophys Res Commun 418:587–591. doi:10.1016/j.bbrc.2012.01.075

    Article  CAS  PubMed  Google Scholar 

  4. Kular J, Tickner J, Chim SM, Xu J (2012) An overview of the regulation of bone remodelling at the cellular level. Clin Biochem 45:863–873. doi:10.1016/j.clinbiochem.2012.03.021

    Article  CAS  PubMed  Google Scholar 

  5. Wei J, Shi Y, Zheng L, Zhou B, Inose H, Wang J, Guo XE, Grosschedl R, Karsenty G (2012) miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J Cell Biol 197:509–521. doi:10.1083/jcb.201201057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen G, Deng C, Li YP (2012) TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8:272–288. doi:10.7150/ijbs.2929ijbsv08p0272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dirckx N, Van Hul M, Maes C (2013) Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration. Birth Defects Res C Embryo Today 99:170–191. doi:10.1002/bdrc.21047

    Article  CAS  PubMed  Google Scholar 

  8. Suomi S, Taipaleenmaki H, Seppanen A, Ripatti T, Vaananen K, Hentunen T, Saamanen AM, Laitala-Leinonen T (2008) MicroRNAs regulate osteogenesis and chondrogenesis of mouse bone marrow stromal cells. Gene Regul Syst Bio 2:177–191

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lakshmipathy U, Hart RP (2008) Concise review: microRNA expression in multipotent mesenchymal stromal cells. Stem Cells 26:356–363. doi:10.1634/stemcells.2007-0625

    Article  CAS  PubMed  Google Scholar 

  10. Yanaihara N, Harris CC (2013) MicroRNA involvement in human cancers. Clin Chem 59:1811–1812. doi:10.1373/clinchem.2012.198176clinchem.2012.198176

    Article  CAS  PubMed  Google Scholar 

  11. Hermeking H (2012) MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12:613–626. doi:10.1038/nrc3318nrc3318

    Article  CAS  PubMed  Google Scholar 

  12. Okamoto H, Matsumi Y, Hoshikawa Y, Takubo K, Ryoke K, Shiota G (2012) Involvement of microRNAs in regulation of osteoblastic differentiation in mouse induced pluripotent stem cells. PLoS ONE 7:e43800. doi:10.1371/journal.pone.0043800PONE-D-12-09922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo L, Zhao RC, Wu Y (2011) The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Exp Hematol 39:608–616. doi:10.1016/j.exphem.2011.01.011S0301-472X(11)00020-8

    Article  CAS  PubMed  Google Scholar 

  14. Li H, Xie H, Liu W, Hu R, Huang B, Tan YF, Xu K, Sheng ZF, Zhou HD, Wu XP, Luo XH (2009) A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest 119:3666–3677. doi:10.1172/JCI3983239832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Genda Y, Arai M, Ishikawa M, Tanaka S, Okabe T, Sakamoto A (2013) microRNA changes in the dorsal horn of the spinal cord of rats with chronic constriction injury: a TaqMan(R) Low Density Array study. Int J Mol Med 31:129–137. doi:10.3892/ijmm.2012.1163

    CAS  PubMed  Google Scholar 

  16. Wu D, Raafat A, Pak E, Clemens S, Murashov AK (2012) Dicer-microRNA pathway is critical for peripheral nerve regeneration and functional recovery in vivo and regenerative axonogenesis in vitro. Exp Neurol 233:555–565. doi:10.1016/j.expneurol.2011.11.041S0014-4886(11)00445-6

    Article  CAS  PubMed  Google Scholar 

  17. Han R, Kan Q, Sun Y, Wang S, Zhang G, Peng T, Jia Y (2012) MiR-9 promotes the neural differentiation of mouse bone marrow mesenchymal stem cells via targeting zinc finger protein 521. Neurosci Lett 515:147–152. doi:10.1016/j.neulet.2012.03.032

    Article  CAS  PubMed  Google Scholar 

  18. Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL et al (2008) A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci USA 105:13906–13911. doi:10.1073/pnas.0804438105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen J, Qiu M, Dou C, Cao Z, Dong S (2015) MicroRNAs in Bone Balance and Osteoporosis. Drug Dev Res 76:235–245. doi:10.1002/ddr.21260

    Article  CAS  PubMed  Google Scholar 

  20. Qiang YW, Barlogie B, Rudikoff S, Shaughnessy JD Jr (2008) Dkk1-induced inhibition of Wnt signaling in osteoblast differentiation is an underlying mechanism of bone loss in multiple myeloma. Bone 42:669–680. doi:10.1016/j.bone.2007.12.006S8756-3282(07)00896-4

    Article  CAS  PubMed  Google Scholar 

  21. Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13:791–807. doi:10.1038/nm1593

    Article  CAS  PubMed  Google Scholar 

  22. Niedzwiedzki T, Filipowska J (2015) Bone remodeling in the context of cellular and systemic regulation: the role of osteocytes and the nervous system. J Mol Endocrinol 55:R23–R36. doi:10.1530/JME-15-0067JME-15-0067

    Article  CAS  PubMed  Google Scholar 

  23. Jobke B, Milovanovic P, Amling M, Busse B (2014) Bisphosphonate-osteoclasts: changes in osteoclast morphology and function induced by antiresorptive nitrogen-containing bisphosphonate treatment in osteoporosis patients. Bone 59:37–43. doi:10.1016/j.bone.2013.10.024S8756-3282(13)00436-5

    Article  CAS  PubMed  Google Scholar 

  24. Khosla S, Westendorf JJ, Oursler MJ (2008) Building bone to reverse osteoporosis and repair fractures. J Clin Invest 118:421–428. doi:10.1172/JCI33612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tengbo Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Xiangyun Liu and Hao Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Xu, H., Kou, j. et al. MiR-9 promotes osteoblast differentiation of mesenchymal stem cells by inhibiting DKK1 gene expression. Mol Biol Rep 43, 939–946 (2016). https://doi.org/10.1007/s11033-016-4030-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-4030-y

Keywords