Skip to main content
Log in

The genome-wide DNA sequence specificity of the anti-tumour drug bleomycin in human cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5′-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5′-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5′-GT*A and 5′- TGT* trinucleotide sequences, and 5′-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5′-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine–pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the −3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Umezawa H, Maeda K, Takeuchi T, Okami Y (1966) New antibiotics, bleomycin A and B. J Antibiot 19:200–209

    CAS  PubMed  Google Scholar 

  2. Stoter G, Kaye SB, de Mulder PH, Levi J, Raghavan D (1994) The importance of bleomycin in combination chemotherapy for good-prognosis germ cell carcinoma. J Clin Oncol 12:644–645

    CAS  PubMed  Google Scholar 

  3. Einhorn LH (2002) Curing metastatic testicular cancer. Proc Natl Acad Sci USA 99:4592–4595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mirabelli CK, Huang CH, Fenwick RG, Crooke ST (1985) Quantitative measurement of single- and double-strand breakage of DNA in Escherichia coli by the antitumor antibiotics bleomycin and talisomycin. Antimicrob Agents Chemother 27:460–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sikic BI (1986) Biochemical and cellular determinants of bleomycin cytotoxicity. Cancer Surv 5:81–91

    CAS  PubMed  Google Scholar 

  6. Burger RM, Berkowitz AR, Peisach J, Horwitz SB (1980) Origin of malondialdehyde from DNA degraded by Fe(II) x bleomycin. J Biol Chem 255:11832–11838

    CAS  PubMed  Google Scholar 

  7. Giloni L, Takeshita M, Johnson F, Iden C, Grollman AP (1981) Bleomycin-induced strand-scission of DNA. Mechanism of deoxyribose cleavage. J Biol Chem 256:8608–8615

    CAS  PubMed  Google Scholar 

  8. Povirk LF, Han YH, Steighner RJ (1989) Structure of bleomycin-induced DNA double-strand breaks: predominance of blunt ends and single-base 5′ extensions. Biochemistry 28:5808–5814

    Article  CAS  PubMed  Google Scholar 

  9. Stubbe J, Kozarich JW, Wu W, Vanderwall DE (1996) Bleomycins: a structural model for specificity, binding, and double strand cleavage. Acc Chem Res 29:322–330

    Article  CAS  Google Scholar 

  10. Burger RM (1998) Cleavage of nucleic acids by bleomycin. Chem Rev 98:1153–1170

    Article  CAS  PubMed  Google Scholar 

  11. Chen J, Stubbe J (2005) Bleomycins: towards better therapeutics. Nat Rev Cancer 5:102–112

    Article  CAS  PubMed  Google Scholar 

  12. Yu Z, Schmaltz RM, Bozeman TC, Paul R, Rishel MJ, Tsosie KS, Hecht SM (2013) Selective tumor cell targeting by the disaccharide moiety of bleomycin. J Am Chem Soc 135:2883–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schroeder BR, Ghare MI, Bhattacharya C, Paul R, Yu Z, Zaleski PA et al (2014) The disaccharide moiety of bleomycin facilitates uptake by cancer cells. J Am Chem Soc 136:13641–13656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takeshita M, Grollman AP, Ohtsubo E, Ohtsubo H (1978) Interaction of bleomycin with DNA. Proc Natl Acad Sci USA 75:5983–5987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takeshita M, Kappen LS, Grollman AP, Eisenberg M, Goldberg IH (1981) Strand scission of deoxyribonucleic acid by neocarzinostatin, auromomycin, and bleomycin: studies on base release and nucleotide sequence specificity. Biochemistry 20:7599–7606

    Article  CAS  PubMed  Google Scholar 

  16. D’Andrea AD, Haseltine WA (1978) Sequence specific cleavage of DNA by the antitumor antibiotics neocarzinostatin and bleomycin. Proc Natl Acad Sci USA 75:3608–3612

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kross J, Henner WD, Hecht SM, Haseltine WA (1982) Specificity of deoxyribonucleic acid cleavage by bleomycin, phleomycin, and tallysomycin. Biochemistry 21:4310–4318

    Article  CAS  PubMed  Google Scholar 

  18. Mirabelli CK, Ting A, Huang CH, Mong S, Crooke ST (1982) Bleomycin and talisomycin sequence-specific strand scission of DNA: a mechanism of double-strand cleavage. Cancer Res 42:2779–2785

    CAS  PubMed  Google Scholar 

  19. Murray V, Martin RF (1985) Comparison of the sequence specificity of bleomycin cleavage in two slightly different DNA sequences. Nucleic Acids Res 13:1467–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Murray V, Tan L, Matthews J, Martin RF (1988) The sequence specificity of bleomycin damage in three cloned DNA sequences that differ by a small number of base substitutions. J Biol Chem 263:12854–12859

    CAS  PubMed  Google Scholar 

  21. Nightingale KP, Fox KR (1993) DNA structure influences sequence specific cleavage by bleomycin. Nucleic Acids Res 21:2549–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Murray V (2000) A survey of the sequence-specific interaction of damaging agents with DNA: emphasis on anti-tumour agents. Prog Nucl Acid Res Mol Biol 63:367–415

    Article  CAS  Google Scholar 

  23. Nguyen TV, Murray V (2012) Human telomeric DNA sequences are a major target for the anti-tumour drug, bleomycin. J Biol Inorgan Chem 17:1–9

    Article  CAS  Google Scholar 

  24. Chung LH, Murray V (2016) The mitochondrial DNA sequence specificity of the anti-tumour drug bleomycin using end-labeled DNA and capillary electrophoresis and a comparison with genome-wide DNA sequencing. J Chromat B 1008:87–97

    Article  CAS  Google Scholar 

  25. Chen JK, Murray V (2016) The determination of the DNA sequence specificity of bleomycin-induced abasic sites. J Biol Inorgan Chem. doi:10.1007/s00775-016-1349-8

    Google Scholar 

  26. Murray V, Martin RF (1985) The sequence specificity of bleomycin-induced DNA damage in intact cells. J Biol Chem 260:10389–10391

    CAS  PubMed  Google Scholar 

  27. Nguyen HTQ, Murray V (2012) The DNA sequence specificity of bleomycin cleavage in telomeric sequences in human cells. J Biol Inorgan Chem 17:1209–1215

    Article  CAS  Google Scholar 

  28. Cairns MJ, Murray V (1996) Influence of chromatin structure on bleomycin-DNA interactions at base pair resolution in the human beta-globin gene cluster. Biochemistry 35:8753–8760

    Article  CAS  PubMed  Google Scholar 

  29. Kim A, Murray V (2000) A large “footprint” at the boundary of the human beta-globin locus control region hypersensitive site-2. Int J Biochem Cell Biol 32:695–702

    Article  CAS  PubMed  Google Scholar 

  30. Kim A, Murray V (2001) Chromatin structure at the 3′-boundary of the human beta-globin locus control region hypersensitive site-2. Int J Biochem Cell Biol 33:1183–1192

    Article  CAS  PubMed  Google Scholar 

  31. Temple MD, Freebody J, Murray V (2004) Genomic and phylogenetic footprinting at the epsilon-globin silencer region in intact human cells. Biochim Biophys Acta 1678:126–134

    Article  CAS  PubMed  Google Scholar 

  32. Temple MD, Murray V (2005) Footprinting the ‘essential regulatory region’ of the retinoblatoma gene promoter in intact human cells. Int J Biochem Cell Biol 37:665–678

    Article  CAS  PubMed  Google Scholar 

  33. Kuo MT, Hsu TC (1978) Bleomycin causes release of nucleosomes from chromatin and chromosomes. Nature 271:83–84

    Article  CAS  PubMed  Google Scholar 

  34. Galea AM, Murray V (2010) The influence of chromatin structure on DNA damage induced by nitrogen mustards and cisplatin analogues. Chem Biol Drug Des 75:578–589

    Article  CAS  PubMed  Google Scholar 

  35. Segerman ZJ, Roy B, Hecht SM (2013) Characterization of bleomycin-mediated cleavage of a hairpin DNA library. Biochemistry 52:5315–5327

    Article  CAS  PubMed  Google Scholar 

  36. Tang C, Paul A, Alam MP, Roy B, Wilson WD, Hecht SM (2014) A short DNA sequence confers strong bleomycin binding to hairpin DNAs. J Am Chem Soc 136:13715–13726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roy B, Tang C, Alam MP, Hecht SM (2014) DNA methylation reduces binding and cleavage by bleomycin. Biochemistry 53:6103–6112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Murray V, Nguyen TV, Chen JK (2012) The use of automated sequencing techniques to investigate the sequence selectivity of DNA damaging agents. Chem Biol Drug Des 80:1–8

    Article  CAS  PubMed  Google Scholar 

  39. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  CAS  PubMed  Google Scholar 

  41. Shu W, Chen H, Bo X, Wang S (2011) Genome-wide analysis of the relationships between DNaseI HS, histone modifications and gene expression reveals distinct modes of chromatin domains. Nucleic Acids Res 39:7428–7443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma QC, Ennis CA, Aparicio S (2012) Opening Pandora’s box—the new biology of driver mutations and clonal evolution in cancer as revealed by next generation sequencing. Curr Opin Genet Dev 22:3–9

    Article  CAS  PubMed  Google Scholar 

  43. Marx V (2013) Next-generation sequencing: the genome jigsaw. Nature 501:263–268

    Article  CAS  PubMed  Google Scholar 

  44. Li W, Zhao K, Kirberger M, Liao W, Yan Y (2015) Next generation sequencing technologies in cancer diagnostics and therapeutics: a mini review. Cell Mol Biol 61:91–102

    CAS  PubMed  Google Scholar 

  45. de Dieuleveult M, Yen K, Hmitou I, Depaux A, Boussouar F, Bou Dargham D et al (2016) Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells. Nature 530:113–116

    Article  PubMed  Google Scholar 

  46. Murray V, Chen JK, Galea AM (2014) The anti-tumour drug, bleomycin, preferentially cleaves at the transcription start sites of actively transcribed genes in human cells. Cell Mol Life Sci 71:1505–1512

    Article  CAS  PubMed  Google Scholar 

  47. Murray V, Chen JK, Galea AM (2014) Enhanced repair of bleomycin DNA damage at the transcription start sites of actively transcribed genes in human cells. Mutat Res Fundal Mol Mech Mutagen 769:93–99

    Article  CAS  Google Scholar 

  48. Langmead B, Trapnell C, Pop M, Salzberg S (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rousseeuw P, Leroy A (1987) Robust regression and outlier detection. Wiley, New York

    Book  Google Scholar 

  51. Hubert M, Debruyne M (2010) Minimum covariance determinant. Wiley Interdiscip Rev Comput Stat 2:36–43

    Article  Google Scholar 

  52. Calladine CR (1982) Mechanics of sequence-dependent stacking of bases in B-DNA. J Mol Biol 161:343–352

    Article  CAS  PubMed  Google Scholar 

  53. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476

    Article  CAS  PubMed  Google Scholar 

  54. Murray V, Motyka H, England PR, Wickham G, Lee HH, Denny WA, McFadyen WD (1992) An investigation of the sequence-specific interaction of cis-diamminedichloroplatinum(II) and four analogues, including two acridine-tethered complexes, with DNA inside human cells. Biochemistry 31:11812–11817

    Article  CAS  PubMed  Google Scholar 

  55. Temple MD, Recabarren P, McFadyen WD, Holmes RJ, Denny WA, Murray V (2002) The interaction of DNA-targeted 9-aminoacridine-4-carboxamide platinum complexes with DNA in intact human cells. Biochim Biophys Acta 1574:223–230

    Article  CAS  PubMed  Google Scholar 

  56. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  57. Ong MS, Richmond TJ, Davey CA (2007) DNA stretching and extreme kinking in the nucleosome core. J Mol Biol 368:1067–1074

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support of this work by the University of New South Wales, Science Faculty Research Grant Scheme is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Murray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, V., Chen, J.K. & Tanaka, M.M. The genome-wide DNA sequence specificity of the anti-tumour drug bleomycin in human cells. Mol Biol Rep 43, 639–651 (2016). https://doi.org/10.1007/s11033-016-3998-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-3998-7

Keywords

Navigation