Skip to main content

Advertisement

Log in

cDNA cloning and molecular characterization of a defensin-like antimicrobial peptide from larvae of Protaetia brevitarsis seulensis (Kolbe)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We identified new defensin-like cDNA (called Psdefensin) by searching data set of high-throughput RNA sequencing (RNA-seq) expression profiling of immunized larva of white-spotted flower chafers, Protaetia brevitarsis seulensis. The length of the analyzed new defensin-like sequences were 240 base pair (bp) and encoded the deduced polypeptide of 79 amino acid residues with signal peptides (amino acids 1–20), pro-peptide region (amino acids 21–36), and mature peptide region (amino acids 37–79). The Psdefensin transcript levels were slightly up-regulated at 4 h post-infection and were highly expressed at 8 h post-infection compared to control larvae injected with sterile water. In addition, the Psdefensin did have antimicrobial activity against both Gram-negative bacteria, E. coli and Gram-positive bacteria, B. subtilis suggesting potentially pharmacologic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nes IF, Holo H, Fimland G, Hauge HH, Nissen-meyer J (2002) Unmodified peptide-bactericine (Class II) produced by lactic acid bacteria. Pept Antibiot 61–87

  2. Pag U, Sahl HG (2002) Multiple activities in lantibiotics—models for the design of novel antibiotics? Curr Pharm Des 8:815–833

    Article  CAS  PubMed  Google Scholar 

  3. Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12:3–11

    Article  CAS  PubMed  Google Scholar 

  4. Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37:D933–D937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Waghu FH, Gopi L, Barai RS, Ramteke P, Nizami B, Idicula-Thomas S (2014) CAMP: collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res 42:D1154–D1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hancock RE, Brown KL, Mookherjee N (2006) Host defence peptides from invertebrates—emerging antimicrobial strategies. Immunobiology 211:315–322

    Article  CAS  PubMed  Google Scholar 

  7. Lee M, Bang K, Kwon H, Cho S (2013) Enhanced antibacterial activity of an attacin-coleoptericin hybrid protein fused with a helical linker. Mol Biol Rep 40:3953–3960

    Article  CAS  PubMed  Google Scholar 

  8. Vizioli J, Salzet M (2002) Antimicrobial peptides from animals: focus on invertebrates. Trends Pharmacol Sci 23:494–496

    Article  CAS  PubMed  Google Scholar 

  9. Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743

    Article  CAS  PubMed  Google Scholar 

  10. Bang K, Park S, Yoo JY, Cho S (2012) Characterization and expression of attacin, an antibacterial protein-encoding gene, from the beet armyworm, Spodoptera exigua (Hübner) (Insecta: Lepidoptera: Noctuidae). Mol Biol Rep 39:5151–5159

    Article  CAS  PubMed  Google Scholar 

  11. Kwon H, Bang K, Cho S (2014) Characterization of the Hemocytes in Larvae of Protaetia brevitarsis seulensis: involvement of Granulocyte-Mediated Phagocytosis. PLoS ONE 9:e103620

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kwon H, Bang K, Lee M, Cho S (2014) Molecular cloning and characterization of a lysozyme cDNA from the mole cricket Gryllotalpa orientalis (Orthoptera: Gryllotalpidae). Mol Biol Rep 41:5745–5754

    Article  CAS  PubMed  Google Scholar 

  13. Boucias D, Pendland J (1993) The galactose binding lectin from the beet armyworm, Spodoptera exigua: distribution and site of synthesis. Insect Biochem Mol Biol 23:233–242

    Article  CAS  PubMed  Google Scholar 

  14. Čeřovský V, Bém R (2014) Lucifensins, the insect defensins of biomedical importance: the story behind maggot therapy. Pharmaceuticals 7:251–264

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lan H, Chen H, Chen L, Wang B, Sun L, Ma M, Fang S, Wan Q (2014) The first report of a Pelecaniformes defensin cluster: characterization of [bgr]-defensin genes in the crested ibis based on BAC libraries. Scientific reports 4

  16. Matsuyama K, Natori S (1988) Purification of three antibacterial proteins from the culture medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina. J Biol Chem 263:17112–17116

    CAS  PubMed  Google Scholar 

  17. Hetru C, Troxler L, Hoffmann JA (2003) Drosophila melanogaster antimicrobial defense. J Infect Dis 187(Suppl 2):S327–S334

    Article  CAS  PubMed  Google Scholar 

  18. Ravi C, Jeyashree A, Devi KR (2011) Antimicrobial peptides from insects: an overview. Res Biotechnol 2:01

    CAS  Google Scholar 

  19. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  20. Lowenberger C, Smartt C, Bulet P, Ferdig M, Severson D, Hoffmann J, Christensen B (1999) Insect immunity: molecular cloning, expression, and characterization of cDNAs and genomic DNA encoding three isoforms of insect defensin in Aedes aegypti. Insect Mol Biol 8:107–118

    Article  CAS  PubMed  Google Scholar 

  21. Lopez L, Morales G, Ursic R, Wolff M, Lowenberger C (2003) Isolation and characterization of a novel insect defensin from Rhodnius prolixus, a vector of Chagas disease. Insect Biochem Mol Biol 33:439–447

    Article  CAS  PubMed  Google Scholar 

  22. Ingham AB, Moore RJ (2007) Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechnol Appl Biochem 47:1–9

    Article  CAS  PubMed  Google Scholar 

  23. Yamada K, Natori S (1994) Characterization of the antimicrobial peptide derived from sapecin B, an antibacterial protein of Sarcophaga peregrina (flesh fly). Biochem J 298:623–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cornet B, Bonmatin J, Hetru C, Hoffmann JA, Ptak M, Vovelle F (1995) Refined three-dimensional solution structure of insect defensin A. Structure 3:435–448

    Article  CAS  PubMed  Google Scholar 

  25. Wang J, Zhao X, Liang Y, Li L, Zhang W, Ren Q, Wang L, Wang L (2006) Molecular characterization and expression of the antimicrobial peptide defensin from the housefly (Musca domestica). Cell Mol Life Sci CMLS 63:3072–3082

    Article  CAS  PubMed  Google Scholar 

  26. Ganz T (2003) The role of antimicrobial peptides in innate immunity. Integr Comp Biol 43:300–304

    Article  CAS  PubMed  Google Scholar 

  27. Viljakainen L, Pamilo P (2008) Selection on an antimicrobial peptide defensin in ants. J Mol Evol 67:643–652

    Article  CAS  PubMed  Google Scholar 

  28. Lee J, Lee D, Choi H, Kim HH, Kim H, Hwang JS, Lee DG, Kim JI (2014) Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle. BMB Rep 47:625–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao B, Zhu S (2013) An insect defensin-derived β-Hairpin peptide with enhanced antibacterial activity. ACS Chem Biol 9:405–413

    Article  PubMed  Google Scholar 

  30. Schroeder BO, Wu Z, Nuding S, Groscurth S, Marcinowski M, Beisner J, Buchner J, Schaller M, Stange EF, Wehkamp J (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human [bgr]-defensin 1. Nature 469:419–423

    Article  CAS  PubMed  Google Scholar 

  31. Komano H, Homma K, Natori S (1991) Involvement of sapecin in embryonic cell proliferation of Sarcophaga peregrina (flesh fly). FEBS Lett 289:167–170

    Article  CAS  PubMed  Google Scholar 

  32. Shimoda M, Takagi H, Kurata S, Yoshioka T, Natori S (1994) Inhibition of the Ca 2v -activated K -channel by sapecin B, an insect antibacterial protein. FEBS Lett 339:59–62

    Article  CAS  PubMed  Google Scholar 

  33. Meredith J, Hurd H, Lehane M, Eggleston P (2008) The malaria vector mosquito Anopheles gambiae expresses a suite of larval-specific defensin genes. Insect Mol Biol 17:103–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hwang JS, Kim SR, Park KH, Nam SH, Hong MY (2008) Research articles: molecular characterization of a defensin-like peptide from larvae of a beetle, Protaetia brevitarsis. Int J Ind Entomol 17:131–135

    Google Scholar 

Download references

Acknowledgments

This research was supported by National Research Foundation of Korea (Grant Number; NRF-2014R1A1A4A01008545), IPET (Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries) (Grant Number 314086-3), and 2015 research grant from Kangwon National University (D1000112-01-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeyoull Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Bang, K., Hwang, S. et al. cDNA cloning and molecular characterization of a defensin-like antimicrobial peptide from larvae of Protaetia brevitarsis seulensis (Kolbe). Mol Biol Rep 43, 371–379 (2016). https://doi.org/10.1007/s11033-016-3967-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-3967-1

Keywords

Navigation