Skip to main content
Log in

Biochemical and molecular characterization of mitochondrial membrane-bound arginase in Heteropneustes fossilis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The two predominant forms of arginase, cytosolic Arginase-I and mitochondrial Arginase-II, catalyze hydrolysis of arginine into ornithine and urea. Based on presence of arginase activity in extracts using potassium chloride (KCl), mitochondrial membrane-bound arginase has also been suggested. However, the activity of arginase in fractions obtained after KCl-treatment may be either due to leakage of mitochondrial arginase or release of adhered cytosolic arginase to cell organelles having altered net charge. Therefore, it has been intended to analyse impact of KCl on ultra-structural properties of mitochondria, and biochemical analysis of mitochondrial membrane-bound proteins and arginase of Heteropneustes fossilis. Liver of H. fossilis was used for isolating mitochondria for analysis of ultrastructural properties, preparing cytosolic, mitochondrial, and mitochondrial-membrane bound extracts after treatment of KCl. Extracts were analysed for arginase activity assay, protein profiling through SDS-PAGE and MALDI MS/MS. The KCl-mediated modulation in polypeptides and arginase were also evaluated by PANTHER, MitoProt and IPSORT servers. The effects of KCl on ultra-structural integrity of mitochondria, activity of arginase, modulation on mitochondrial proteins and enzymes including arginase were observed. The 48 kDa polypeptide of mitochondrial fraction, that showed KCl-dependent alteration matched with Myb binding protein and 30 kDa bands resembles to arginase after MALDI MS/MS analysis. Results indicate KCl-dependent ultrastructural changes in mitochondria and release of mitochondrial arginase. The proposed membrane bound mitochondrial arginase could be mitochondrial arginase-II or altered form of cytosolic arginase-I contributing to KCl-induced arginase activity in H. fossilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kossel A, Dakin HD (1904) Über die Arginase. Hoppe Seylers Z Physiol Chem. 41:321–331

    Article  Google Scholar 

  2. Tarrab R, Rodriguez J, Huitron C, Palacios R, Soberon G (1974) Molecular forms of rat-liver arginase: isolation and characterization. Eur J Biochem 49:457–468

    Article  CAS  PubMed  Google Scholar 

  3. Casey CA, Anderson PM (1982) Sub-cellular location of glutamine synthetase and urea cycle enzymes in liver of spiny dogfish (Squalus acanthias). J Biol Chem 257:8449–8453

    CAS  PubMed  Google Scholar 

  4. Dkhar J, Saha N, Ratha BK (1991) Ureogenesis in a freshwater teleost: an unusual sub-cellular localization of ornithine-urea cycle enzymes in the freshwater air-breathing teleost Heteropneustes fossilis. Biochem Int 25:1061–1069

    CAS  PubMed  Google Scholar 

  5. Porembska Z, Zamecka E (1984) Immunological properties of rat arginases. Acta Biochim Polon 31:223–227

    CAS  PubMed  Google Scholar 

  6. Venkatakrishnan G, Reddy SRR (2010) Arginase isoforms in frog and lizard tissues. Indian J Biochem Biophys 47:13–19

    CAS  PubMed  Google Scholar 

  7. Grazi E, Magri M, Barsacchi R, Traniello S (1975) Molecular characteristics of chicken kidney. Biochem J 145:153–157

    Article  PubMed  PubMed Central  Google Scholar 

  8. Porembska Z, Skrzypek-Osiecka I, Rahden-Staron I (1980) Sub-cellular localization of arginase in rat liver. Acta Biochim Polon 27:203–211

    PubMed  Google Scholar 

  9. Cheung CW, Raijman L (1981) Arginine mitochondrial arginase and the control of carbamoyl phosphate synthesis. Arch Biochem Biophys 209:643–649

    Article  CAS  PubMed  Google Scholar 

  10. Nissim I, Luhovyy B, Horyn O, Daikhin Y, Nissim I, Yudkoff M (2005) The role of mitochondrially bound arginase in the regulation of urea synthesis: studies with [U-15N4] arginine isolated mitochondria and perfused rat liver. J Biol Chem 280:17715–17724

    Article  CAS  PubMed  Google Scholar 

  11. Srivastava S, Ratha BK (2013) Unique hepatic cytosolic arginase evolved independently in ureogenic fresh water air breathing teleost Heteropneustes fossilis. PLoS One 8:e66057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79(4):1127–1155

    CAS  PubMed  Google Scholar 

  13. Michea L, Combs C, Andrews P, Dmitrieva N, Burg MB (2002) Mitochondrial dysfunction is an early event in high-NaCl-induced apoptosis of mIMCD3 cells. Am J Physiol Renal Physiol 282:F981–F990

    Article  CAS  PubMed  Google Scholar 

  14. Böckmann RA, Hac A, Heimburg T, Grubmüller H (2003) Effect of sodium chloride on a lipid bilayer. Biophys J 85:1647–1655

    Article  PubMed  PubMed Central  Google Scholar 

  15. Uren RT, Dewson G, Bonzon C, Lithgow T, Newmeyer DD, Kluck RM (2005) Mitochondrial release of pro-apoptotic proteins electrostatic interactions can hold cytochrome c but not smac/diablo to mitochondrial membranes. J Biol Chem 280:2266–2274

    Article  CAS  PubMed  Google Scholar 

  16. Fieni F, Parkar A, Misgeld T, Kerschensteiner M, Lichtman JF, Pasinelli P, Trotti D (2010) Voltage-dependent inwardly rectifying potassium conductance in the outer membrane of neuronal mitochondria. J Biol Chem 285(35):27411–27417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Glass RD, Knox WE (1973) Arginase isozymes of rat mammary gland liver and other tissue. J Biol Chem 248:5785–5789

    CAS  PubMed  Google Scholar 

  18. Cubitt AB, Gershengorn MC (1989) Characterization of a salt-extractable phosphatidylinositol synthase from rat pituitary-tumour membranes. Biochem J 257:639–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yannariello-Brown J, Weigel PH (1992) Detergent solubilization of the endocytic Ca(2+)-independent hyaluronan receptor from rat liver endothelial cells and separation from a Ca(2+)-dependent hyaluronan-binding activity. Biochemistry 31(2):576–584

    Article  CAS  PubMed  Google Scholar 

  20. Mishra S, Mishra R (2015) Molecular integrity of mitochondria alters by potassium chloride. Int J Proteomics. doi:10.1155/2015/647408

    PubMed  PubMed Central  Google Scholar 

  21. Mishra R, Shukla SP (1994) Effect of endosulphan on bioenergetic properties of liver mitochondria from the freshwater catfish Clarias batrachus. Pestic Biochem Physiol 50:240–246

    Article  CAS  Google Scholar 

  22. Olson JA, Anfinsen CB (1952) The crystallization and characterization of l-glutamic acid dehydrogenase. J Biol Chem 19:67–79

    Google Scholar 

  23. Ells HA (1959) A colorimetric method for the assay of soluble succinic dehydrogenase and pyridinenucleotide-linked dehydrogenases. Arch Biochem Biophys 85:561–562

    Article  CAS  PubMed  Google Scholar 

  24. Brown GW, Cohen PP (1959) Comparative biochemistry of urea synthesis: methods for the quantitative assay of urea cycle enzyme in the liver. J Biol Chem 234:1769–1774

    CAS  PubMed  Google Scholar 

  25. Bradford MM (1976) A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  26. Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:770–786

    Article  Google Scholar 

  27. Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18(2):298–305

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

S.M. acknowledges the Research fellowship in science for meritorious students (RFSMS), U.G.C., New Delhi. Partial financial supports from the DST-PURSE, UGC-CAS, UGC-UPE, DBT-BHU-ISLS to RM are sincerely acknowledged. Authors thank Prof. Nagendra Kumar, Professor in English, IIT, Roorkee, and Prof. S. P. Shukla, Professor in Zoology (Retd.), for their valuable time and help in editing our manuscript. We are thankful to DBT-BHU-ISLS for doing MALDI-MS/MS analysis, the Department of Zoology, BHU for providing SEM facility. Technical supports during SEM studies by Prof. Dinesh Kumar and Mr. Gaurav Srivastava are appreciated. We also appreciate AIIMS, New Delhi for extending TEM facility for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajnikant Mishra.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Mishra, R. Biochemical and molecular characterization of mitochondrial membrane-bound arginase in Heteropneustes fossilis . Mol Biol Rep 43, 359–369 (2016). https://doi.org/10.1007/s11033-016-3965-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-3965-3

Keywords

Navigation