Skip to main content

Advertisement

Log in

Antiglycation and cell protective actions of metformin and glipizide in erythrocytes and monocytes

  • Manuscript
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Chronic hyperglycaemia causes glycation which subsequently results in the long-term complications of diabetes. Albumin, the major plasma protein is more sensitive to glycation resulting in structural, biological and physiological modifications. The long-term benefits of commonly used anti-diabetic drugs such as metformin and glipizide in diabetic patients are well understood. However, no extensive study has been performed to assess their role in the glycation induced albumin modifications and cellular protection. We carried out the glycation of bovine serum albumin using methylglyoxal as a glycating agent in absence or presence of metformin and glipizide to establish their anti-glycation action. Different glycation markers (fructosamine, carbonyl groups, free thiol groups and β-amyloid aggregation) and protein structural markers (absorption spectroscopy and native-polyacrylamide gel electrophoresis) were examined. Further THP-1 cells (monocytes) and erythrocytes were treated with drugs that were exposed to glycated albumin samples for 24 h, respectively at 37 °C to investigate the cytoprotective actions of drugs against glycation. After the treatment different anti-oxidant indices (catalase, glutathione, superoxide dismutase and nitric oxide), cell viability, lipid peroxidation and erythrocyte hemolysis were determined. Treatment with metformin and glipizide during in vitro albumin glycation significantly reduced the formation of glycation adducts and inhibited structural modifications. They restored the level of antioxidants in THP-1 and erythrocytes cells treated with glycated albumin thus protecting cells. Our results suggested protection mode of albumin glycation through inhibition by metformin and glipizide. Additionally, they exerted inhibitory actions on glycation-induced cellular damage by restoring cellular antioxidant defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rondeau P, Bourdon E (2011) The glycation of albumin: structural and functional impacts. Biochimie 93(4):645–658

    Article  CAS  PubMed  Google Scholar 

  2. Tupe RS, Agte VV (2010) Role of zinc along with ascorbic acid and folic acid during long-term in vitro albumin glycation. Br J Nutr 103(3):370–377

    Article  CAS  PubMed  Google Scholar 

  3. Salazar R, Brandt R, Krantz S (1995) Expression of fructosyllysine receptors on human monocytes and monocyte-like cell lines. Biochim Biophys Acta 1266(1):57–63

    Article  PubMed  Google Scholar 

  4. Saha A, Adak S, Chowdhury S, Bhattacharyya M (2005) Enhanced oxygen releasing capacity and oxidative stress in diabetes mellitus and diabetes mellitus-associated cardiovascular disease: a comparative study. Clin Chim Acta 361(1–2):141–149

    Article  CAS  PubMed  Google Scholar 

  5. Shim E, Babu JP (2015) Glycated albumin produced in diabetic hyperglycemia promotes monocyte secretion of inflammatory cytokines and bacterial adherence to epithelial cells. J Periodontal Res 50(2):197–204

    Article  CAS  PubMed  Google Scholar 

  6. Rowena B, Sven K (2006) Glycated albumin (Amadori product) induces activation of MAP kinases in monocyte-like MonoMac 6 cells. Biochim Biophys Acta 1760(11):1749–1753

    Article  Google Scholar 

  7. Giugliano D, Ceriello A, Paolisso G (1996) Oxidative stress and diabetic vascular complications. Diabetes Care 19:257e67

    Article  Google Scholar 

  8. Robertson RP, Harmon J, Tran PO, Poitout V (2004) Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 53:S119–S124

    Article  CAS  PubMed  Google Scholar 

  9. Nicolay JP, Schneider J, Niemoeller OM, Artunc F et al (2006) Stimulation of suicidal erythrocyte death by methylglyoxal. Cell Physiol Biochem 18(4–5):223–232

    Article  CAS  PubMed  Google Scholar 

  10. Lee BH, Hsu WH, Huang T, Chang YY, Hsu YW, Pan TM (2013) Effects of monascin on anti-inflammation mediated by Nrf2 activation in advanced glycation end product-treated THP-1 monocytes and methylglyoxal-treated wistar rats. J Agric Food Chem 61(6):1288–1298

    Article  CAS  PubMed  Google Scholar 

  11. Scarpello JH, Howlett HC (2008) Metformin therapy and clinical uses. Diab Vasc Dis Res 5:157e67

    Article  Google Scholar 

  12. Mutalik S, Udupa N, Kumar S, Agarwal S, Subramanian G, Ranjith AK (2006) Glipizide matrix transdermal systems for diabetes mellitus: preparation, in vitro and preclinical studies. Life Sci 79(16):1568–1577

    Article  CAS  PubMed  Google Scholar 

  13. Abe M, Okada K, Maruyama T, Maruyama N, Matsumoto K (2010) Efficacy and safety of mitiglinide in diabetic patients on maintenance hemodialysis. Endocr J 57(7):579–586

    Article  CAS  PubMed  Google Scholar 

  14. Iannuzzi C, Maritato R, Irace G, Sirangelo I (2013) Glycation accelerates fibrillization of the amyloidogenic W7FW14F apomyoglobin. PLoS One 8(12):e80768

    Article  PubMed Central  PubMed  Google Scholar 

  15. Tanaka Y, Uchino H, Shimizu T, Yoshii H, Niwa M et al (1999) Effect of metformin on advanced glycation end product formation and peripheral nerve function in streptozotocin-induced diabetic rats. Eur J Pharmacol 376(1–2):17–22

    Article  CAS  PubMed  Google Scholar 

  16. Li W, Ota K, Nakamura J, Naruse K, Nakashima E, Oiso Y, Hamada Y (2008) Antiglycation effect of gliclazide on in vitro AGE formation from glucose and methylglyoxal. Exp Biol Med (Maywood) 233(2):176–179

    Article  CAS  Google Scholar 

  17. Baker JR, Metcalf PA, Johnson RN, Newman D, Rietz P (1985) Use of protein-based standards in automated colorimetric determinations of fructosamine in serum. Clin Chem 31:1550–1554

    CAS  PubMed  Google Scholar 

  18. Uchida KM, Kanematsu K, Sakai T et al (1998) Protein-bound Macrolein: potential markers for oxidative stress (covalent modification of protein/antibody/atherosclerosis). Proc Natl Acad Sci USA 95:4882–4887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Klunk WE, Jacob RF, Mason RP (1999) Quantifying amyloid by Congo red spectral shift assay. Methods Enzymol 309:285–305

    Article  CAS  PubMed  Google Scholar 

  20. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  22. Baraka VJ, Navarra G, Leone M, Bourdon E, Militello V, Rondeau P (2014) Deciphering metal-induced oxidative damages on glycated albumin structure and function. Biochim Biophys Acta 1840(6):1712–1724

    Article  Google Scholar 

  23. Tsuei AC, Martinus RD (2012) Metformin induced expression of Hsp60 in human THP-1 monocyte cells. Cell Stress Chaperones 17(1):23–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Aebi H (1984) Catalase in vitro. In: Packer L (ed) Methods enzymol, vol 105. Academic press, New York, pp 121–126

    Google Scholar 

  25. Bitar MS, Wahid S, Mustafa S, Al-Saleh E, Dhaunsi GS, Al-Mulla F (2005) Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes. Eur J Pharmacol 21(511):53–64

    Article  Google Scholar 

  26. Ajila CM, Prasada RUJ (2008) Protection against hydrogen peroxide induced oxidative damage in rat erythrocytes by Mangifera indica L. peel extract. Food Chem Toxicol 46:303–309

    Article  CAS  PubMed  Google Scholar 

  27. Placer ZA, Crushman LL, Johnson BC (1966) Estimation of products of lipid peroxidation (MDA) in biochemical systems. Anal Chem 16:359–364

    CAS  Google Scholar 

  28. Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195

    Article  CAS  PubMed  Google Scholar 

  29. Wiernsperger N, Rapin JR (1995) Metformin–insulin interactions: from organ to cell. Diabetes Metab Rev 11:S3–S12

    Article  CAS  PubMed  Google Scholar 

  30. Dupont J, Pereira C, Medeira A, Duarte R, Ellard S, Sampaio L (2012) Permanent neonatal diabetes mellitus due to KCNJ11 mutation in a Portuguese family: transition from insulin to oral sulfonylureas. J Pediatr Endocrinol Metab 25(3–4):367–370

    CAS  PubMed  Google Scholar 

  31. Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS et al (2004) Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol Chem 279(42):43940–43951

    Article  CAS  PubMed  Google Scholar 

  32. Lee KW, Ku YH, Kim M, Ahn BY, Chung SS, Park KS (2011) Effects of sulfonylureas on peroxisome proliferator-activated receptor γ activity and on glucose uptake by thiazolidinediones. Diabetes Metab J 35(4):340–347

    Article  PubMed Central  PubMed  Google Scholar 

  33. Johnson RN, Metcalf PA, Baker JR (1982) Fructosamine: a new approach to the estimation of serum glycosyl protein. An index of diabetic control. Clin Chim Acta 127:87–95

    Article  Google Scholar 

  34. Petitti DB, Contreras R, Dudl J (2001) Randomized trial of fructosamine home monitoring in patients with diabetes. Eff Clin Pract 4(1):18–23

    CAS  PubMed  Google Scholar 

  35. Stoppa GR, Cesquini M, Roman EA, Ogo SH, Torsoni MA (2006) Aminoguanidine prevented impairment of blood antioxidant system in insulin-dependent diabetic rats. Life Sci 78(12):1352–1361

    Article  CAS  PubMed  Google Scholar 

  36. Ahmad S, Shahab U, Baig MH et al (2013) Inhibitory effect of metformin and pyridoxamine in the formation of early, intermediate and advanced glycation end-products. PLoS One 8(9):e72128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Matsuda R, Li Z, Zheng X, Hage DS (2015) Analysis of glipizide binding to normal and glycated human serum albumin by high-performance affinity chromatography. Anal Bioanal Chem 407:309–321

    Article  Google Scholar 

  38. Anguizola J, Matsuda R, Barnaby OS, Hoy KS, Wa C, DeBolt E, Koke M, Hage DS (2013) Review: glycation of human serum albumin. Clin Chim Acta 425:64–76

    Article  CAS  PubMed  Google Scholar 

  39. Anguizola J, Joseph KS, Barnaby OS, Matsuda R, Alvarado G, Clarke W et al (2013) Development of affinity microcolumns for drug-protein binding studies in personalized medicine: interactions of sulfonylurea drugs with in vivo glycated human serum albumin. Anal Chem 85:4453–4460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Balu M, Sangeetha P, Murali G, Panneerselvam C (2005) Age-related oxidative protein damages in central nervous system of rats: modulatory role of grape seed extract. Int J Dev Neurosci 23:501–507

    Article  CAS  PubMed  Google Scholar 

  41. Matsuda R, Anguizola J, Joseph KS, Hage DS (2012) Analysis of drug interactions with modified proteins by high-performance affinity chromatography: binding of glibenclamide to normal and glycated human serum albumin. J Chromatogr A 1265:114–122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Bouma B, Kroon-Batenburg LM, Wu YP et al (2003) Glycation induces formation of amyloid cross-beta structure in albumin. J Biol Chem 278(43):41810–41819

    Article  CAS  PubMed  Google Scholar 

  43. Salman ZK, Refaat R, Selima E, El Sarha A, Ismail MA (2013) The combined effect of metformin and l-cysteine on inflammation, oxidative stress and insulin resistance in streptozotocin-induced type 2 diabetes in rats. Eur J Pharmacol 714(1–3):448–455

    Article  CAS  PubMed  Google Scholar 

  44. Hull RL, Shen ZP, Watts MR et al (2005) Long-term treatment with rosiglitazone and metformin reduces the extent of, but does not prevent, islet amyloid deposition in mice expressing the gene for human islet amyloid polypeptide. Diabetes 54(7):2235–2244

    Article  CAS  PubMed  Google Scholar 

  45. Jennings PE, Belch JJ (2000) Free radical scavenging activity of sulfonylureas: a clinical assessment of the effect of gliclazide. Metabolism 49:23–26

    Article  CAS  PubMed  Google Scholar 

  46. Chesne S, Rondeau P, Armenta S, Bourdon E (2006) Effects of oxidative modifications induced by the glycation of bovine serum albumin on its structure and on cultured adipose cells. Biochimie 88:1467–1477

    Article  CAS  PubMed  Google Scholar 

  47. Zeng J, Davies MJ (2006) Protein and low molecular mass thiols as targets and inhibitors of glycation reactions. Chem Res Toxicol 12:1668–1676

    Article  Google Scholar 

  48. Oettl K, Stauber RE (2007) Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties. Br J Pharmacol 151:580–590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. O’Brien RC, Luo M, Balazs N, Mercuri J (2000) In vitro and in vivo antioxidant properties of gliclazide. J Diabetes Complicat 4:201–206

    Article  Google Scholar 

  50. Rondeau P, Armenta S, Caillens H, Chesne S, Bourdon E (2007) Assessment of temperature effects on beta-aggregation of native and glycated albumin by FTIR spectroscopy and PAGE: relations between structural changes and antioxidant properties. Arch Biochem Biophys 460:141–150

    Article  CAS  PubMed  Google Scholar 

  51. Matsuda R, Anguizola J, Joseph KS, Hage DS (2011) High-performance affinity chromatography and the analysis of drug interactions with modified proteins: binding of gliclazide with glycated human serum albumin. Anal Bioanal Chem 401:2811–2819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Beisswenger PJ, Howell SK, Smith K, Szwergold BS (2003) Glyceraldehyde-3-phosphate dehydrogenase activity as an independent modifier of methylglyoxal levels in diabetes. Biochim Biophys Acta 1637(1):98–106

    Article  CAS  PubMed  Google Scholar 

  53. Bujak-Gizycka B, Suski M, Olszanecki R, Madej J, Korbut R (2009) Metformin—an inhibitor of early stages of protein glycation. Folia Med Cracov 50(3–4):21–33

    PubMed  Google Scholar 

  54. Ouslimani N, Peynet J, Bonnefont RD, Therond P, Legrand A, Beaudeux JL (2005) Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells. Metabolism 54(6):829–834

    Article  CAS  PubMed  Google Scholar 

  55. Bukan N, Sancak B, Bilgihan A, Kosova F, Bugdayci G, Altan N (2004) The effects of the sulfonylurea glyburide on glutathione peroxidase, superoxide dismutase and catalase activities in the heart tissue of streptozotocin-induced diabetic rat. Methods Find Exp Clin Pharmacol 7:519–522

    Article  Google Scholar 

  56. Sliwinska A, Rogalska A, Szwed M, Kasznicki J, Jozwiak Z, Drzewoski J (2012) Gliclazide may have an antiapoptotic effect related to its antioxidant properties in human normal and cancer cells. Mol Biol Rep 39(5):5253–5267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Tupe RS, Tupe SG, Tarwadi KV, Agte VV (2010) Effect of different dietary zinc levels on hepatic antioxidant and micronutrients indices under oxidative stress conditions. Metabolism 59(11):1603–1611

    Article  CAS  PubMed  Google Scholar 

  58. Muller S, Denet S, Candiloros H, Barrois R, Wiernsperger N, Donner M, Drouin P (1997) Action of metformin on erythrocyte membrane fluidity in vitro and in vivo. Eur J Pharmacol 337(1):103–110

    Article  CAS  PubMed  Google Scholar 

  59. Srividhya S, Ravichandran MK, Anuradha CV (2002) Metformin attenuates blood lipid peroxidation and potentiates antioxidant defense in high fructose-fed rats. J Biochem Mol Biol Biophys 6:379–385

    Article  CAS  PubMed  Google Scholar 

  60. Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F (2012) Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 122(6):253–270

    Article  CAS  Google Scholar 

  61. Tessier D, Maheux P, Khalil A, Fulop T (1999) Effects of gliclazide versus metformin on the clinical profile and lipid peroxidation markers in type 2 diabetes. Metabolism 48(7):897–903

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We greatly acknowledge all the participants who volunteered in this study and NCCS for providing cell line.

Funding

This study was funded by Department of Biotechnology (DBT) (Grant No: BT/Bio-CARe/08/837/2010-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Tupe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeshara, K., Tupe, R. Antiglycation and cell protective actions of metformin and glipizide in erythrocytes and monocytes. Mol Biol Rep 43, 195–205 (2016). https://doi.org/10.1007/s11033-016-3947-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-3947-5

Keywords

Navigation