Skip to main content
Log in

The transcriptional coregulator MAML1 affects DNA methylation and gene expression patterns in human embryonic kidney cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Mastermind-like 1 (MAML1) is a transcriptional coregulator that has been associated with early development of many systems such as neuronal, muscular and urogenital. The present study aimed to explore the genome wide effects of MAML1 on DNA methylation and RNA expression in human embryonic kidney cells. Infinium HumanMethylation450 BeadChip Illumina array, methylation-sensitive high-resolution melt technique, Chip Analysis Methylation Pipeline and RNA profiling approaches were used to study MAML1 effects on the epigenome. We found that 11802 CpG sites were differentially methylated in MAML1-expressing cells while only 225 genes were differentially expressed. MAML1 overexpression induced more global differential hypermethylation than hypomethylation changes. In addition, the differentially methylated regions were mapped predominantly to 3′untranslated regions, intragenic regions and gene bodies and to a lesser extent to gene regulatory sequences. Gene ontology analysis revealed that the differentially changed genes (including HOXC11, HTATIP2, SLFN12 and SOX11) are involved in the regulation of urogenital system development, cell adhesion and embryogenesis. This study is the first report that shows the global effect of a single coregulator on DNA methylation and gene expression. Our results stress and support the effects of transcriptional coregulators on the cell methylome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McElhinny AS, Li JL, Wu L (2008) Mastermind-like transcriptional co-activators: emerging roles in regulating cross talk among multiple signaling pathways. Oncogene 27(38):5138–5147

    Article  CAS  PubMed  Google Scholar 

  2. Saint Just Ribeiro M, Wallberg AE (2009) Transcriptional mechanisms by the coregulator MAML1. Curr Protein Pept Sci 10(6):570–576

    Article  CAS  PubMed  Google Scholar 

  3. Hansson ML, Behmer S, Ceder R, Mohammadi S, Preta G, Grafstrom RC, Fadeel B, Wallberg AE (2012) MAML1 acts cooperatively with EGR1 to activate EGR1-regulated promoters: implications for nephrogenesis and the development of renal cancer. Plos One 7(9):e46001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W (2013) Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci 368(1609):20110330

    Article  PubMed Central  PubMed  Google Scholar 

  5. Song F, Mahmood S, Ghosh S, Liang P, Smiraglia DJ, Nagase H, Held WA (2009) Tissue specific differentially methylated regions (TDMR): changes in DNA methylation during development. Genomics 93(2):130–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ohtani K, Dimmeler S (2011) Epigenetic regulation of cardiovascular differentiation. Cardiovasc Res 90(3):404–412

    Article  CAS  PubMed  Google Scholar 

  7. Sousa-Victor P, Munoz-Canoves P, Perdiguero E (2011) Regulation of skeletal muscle stem cells through epigenetic mechanisms. Toxicol Mech Methods 21(4):334–342

    Article  CAS  PubMed  Google Scholar 

  8. Gibney ER, Nolan CM (2010) Epigenetics and gene expression. Heredity (Edinb) 105(1):4–13

    Article  CAS  Google Scholar 

  9. Hackett JA, Surani MA (2013) DNA methylation dynamics during the mammalian life cycle. Philos Trans R Soc Lond B Biol Sci 368(1609):20110328

    Article  PubMed Central  PubMed  Google Scholar 

  10. Bergman Y, Cedar H (2013) DNA methylation dynamics in health and disease. Nat Struct Mol Biol 20(3):274–281

    Article  CAS  PubMed  Google Scholar 

  11. Hansson ML, Popko-Scibor AE, Saint Just Ribeiro M, Dancy BM, Lindberg MJ, Cole PA, Wallberg AE (2009) The transcriptional coactivator MAML1 regulates p300 autoacetylation and HAT activity. Nucleic Acids Res 37(9):2996–3006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Chen J, Li Q (2011) Life and death of transcriptional co-activator p300. Epigenetics 6(8):957–961

    Article  CAS  PubMed  Google Scholar 

  13. McKinsey TA, Zhang CL, Lu J, Olson EN (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408(6808):106–111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Blattler A, Farnham PJ (2013) Cross-talk between site-specific transcription factors and DNA methylation states. J Biol Chem 288(48):34287–34294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Putnik M, Zhao C, Gustafsson JA, Dahlman-Wright K (2012) Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells. Biochem Biophys Res Commun 426(1):26–32

    Article  CAS  PubMed  Google Scholar 

  16. Zhao C, Putnik M, Gustafsson JA, Dahlman-Wright K (2009) Microarray analysis of altered gene expression in ERbeta-overexpressing HEK293 cells. Endocrine 36(2):224–232

    Article  CAS  PubMed  Google Scholar 

  17. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  18. da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13

    Article  PubMed Central  Google Scholar 

  19. Akamine R, Yamamoto T, Watanabe M, Yamazaki N, Kataoka M, Ishikawa M, Ooie T, Baba Y, Shinohara Y (2007) Usefulness of the 5′ region of the cDNA encoding acidic ribosomal phosphoprotein P0 conserved among rats, mice, and humans as a standard probe for gene expression analysis in different tissues and animal species. J Biochem Biophys Methods 70(3):481–486

    Article  CAS  PubMed  Google Scholar 

  20. Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, Beck S (2013) A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 29(2):189–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz TK, Beck S (2013) ChAMP: 450 k Chip Analysis Methylation Pipeline. Bioinformatics

  22. Wojdacz TK, Dobrovic A, Hansen LL (2008) Methylation-sensitive high-resolution melting. Nat Protoc 3(12):1903–1908

    Article  CAS  PubMed  Google Scholar 

  23. Ying Y, Tao Q (2009) Epigenetic disruption of the WNT/beta-catenin signaling pathway in human cancers. Epigenetics 4(5):307–312

    Article  CAS  PubMed  Google Scholar 

  24. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336):68–73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Spitz F, Furlong EE (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13(9):613–626

    Article  CAS  PubMed  Google Scholar 

  26. Smallwood SA, Kelsey G (2012) De novo DNA methylation: a germ cell perspective. Trends Genet 28(1):33–42

    Article  CAS  PubMed  Google Scholar 

  27. Wang M, Xie H, Shrestha S, Sredni S, Morgan GA, Pachman LM (2012) Methylation alterations of WT1 and homeobox genes in inflamed muscle biopsy samples from patients with untreated juvenile dermatomyositis suggest self-renewal capacity. Arthritis Rheum 64(10):3478–3485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Shiraishi M, Sekiguchi A, Oates AJ, Terry MJ, Miyamoto Y (2002) HOX gene clusters are hotspots of de novo methylation in CpG islands of human lung adenocarcinomas. Oncogene 21(22):3659–3662

    Article  CAS  PubMed  Google Scholar 

  29. Tommasi S, Karm DL, Wu X, Yen Y, Pfeifer GP (2009) Methylation of homeobox genes is a frequent and early epigenetic event in breast cancer. Breast Cancer Res 11(1):R14

    Article  PubMed Central  PubMed  Google Scholar 

  30. Lu B, Ma Y, Wu G, Tong X, Guo H, Liang A, Cong W, Liu C, Wang H, Wu M, Zhao J, Guo Y (2008) Methylation of Tip30 promoter is associated with poor prognosis in human hepatocellular carcinoma. Clin Cancer Res 14(22):7405–7412

    Article  CAS  PubMed  Google Scholar 

  31. Mavrommatis E, Fish EN, Platanias LC (2013) The schlafen family of proteins and their regulation by interferons. J Interferon Cytokine Res 33(4):206–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Bergsland M, Ramskold D, Zaouter C, Klum S, Sandberg R, Muhr J (2011) Sequentially acting Sox transcription factors in neural lineage development. Genes Dev 25(23):2453–2464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Gustavsson E, Sernbo S, Andersson E, Brennan DJ, Dictor M, Jerkeman M, Borrebaeck CA, Ek S (2010) SOX11 expression correlates to promoter methylation and regulates tumor growth in hematopoietic malignancies. Mol Cancer 9:187

    Article  PubMed Central  PubMed  Google Scholar 

  34. Wasik AM, Lord M, Wang X, Zong F, Andersson P, Kimby E, Christensson B, Karimi M, Sander B (2013) SOXC transcription factors in mantle cell lymphoma: the role of promoter methylation in SOX11 expression. Sci Rep 3:1400

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the Swedish Research Council to A.E.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika E. Wallberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Supplementary material 2 (DOCX 16 kb)

Supplementary material 3 (XLSX 20 kb)

Supplementary material 4 (XLSX 386 kb)

Supplementary material 5 (XLSX 29 kb)

Supplementary material 6 (XLSX 1580 kb)

Supplementary material 7 (XLSX 9 kb)

11033_2016_3946_MOESM1_ESM.pptx

Supplementary Fig. 1: Boxplots of differentially methylated probes, stratified by annotated genomic region. A. Distribution of all differentially methylated probes. B. Distribution of all differentially hypomethylated probes. C. Distribution of all differentially hypermethylated probes. The width of the boxplot reflects the number of observations in each category. UTR: untranslated region; TSS200: 200 bp within transcriptional start site; TSS1500: 1.5 kb within transcriptional start site; N shore: north shore (upstream from CpG island); N shelf: north shelf (upstream from north shore); S shore: south shore (downstream from CpG island); S shelf: south shelf (downstream from south shore). (PPTX 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putnik, M., Brodin, D., Wojdacz, T.K. et al. The transcriptional coregulator MAML1 affects DNA methylation and gene expression patterns in human embryonic kidney cells. Mol Biol Rep 43, 141–150 (2016). https://doi.org/10.1007/s11033-016-3946-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-3946-6

Keywords

Navigation