Skip to main content

Advertisement

Log in

Methylation and microRNA-mediated epigenetic regulation of SOCS3

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Epigenetic gene silencing of several genes causes different pathological conditions in humans, and DNA methylation has been identified as one of the key mechanisms that underlie this evolutionarily conserved phenomenon associated with developmental and pathological gene regulation. Recent advances in the miRNA technology with high throughput analysis of gene regulation further increased our understanding on the role of miRNAs regulating multiple gene expression. There is increasing evidence supporting that the miRNAs not only regulate gene expression but they also are involved in the hypermethylation of promoter sequences, which cumulatively contributes to the epigenetic gene silencing. Here, we critically evaluated the recent progress on the transcriptional regulation of an important suppressor protein that inhibits cytokine-mediated signaling, SOCS3, whose expression is directly regulated both by promoter methylation and also by microRNAs, affecting its vital cell regulating functions. SOCS3 was identified as a potent inhibitor of Jak/Stat signaling pathway which is frequently upregulated in several pathologies, including cardiovascular disease, cancer, diabetes, viral infections, and the expression of SOCS3 was inhibited or greatly reduced due to hypermethylation of the CpG islands in its promoter region or suppression of its expression by different microRNAs. Additionally, we discuss key intracellular signaling pathways regulated by SOCS3 involving cellular events, including cell proliferation, cell growth, cell migration and apoptosis. Identification of the pathway intermediates as specific targets would not only aid in the development of novel therapeutic drugs, but, would also assist in developing new treatment strategies that could successfully be employed in combination therapy to target multiple signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW, Baylin SB, Vogelstein B (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416:552–556

    CAS  PubMed  Google Scholar 

  2. Paz MF, Wei S, Cigudosa JC, Rodriguez-Perales S, Peinado MA, Huang TH, Esteller M (2003) Genetic unmasking of epigenetically silenced tumor suppressor genes in colon cancer cells deficient in DNA methyltransferases. Hum Mol Genet 12:2209–2219

    CAS  PubMed  Google Scholar 

  3. Ballestar E, Esteller M (2005) The epigenetic breakdown of cancer cells: from DNA methylation to histone modifications. Prog Mol Subcell Biol 38:169–181

    CAS  PubMed  Google Scholar 

  4. Lopez-Serra L, Ballestar E, Fraga MF, Alaminos M, Setien F, Esteller M (2006) A profile of methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG islands of tumor suppressor genes in human cancer. Cancer Res 66:8342–8346

    CAS  PubMed  Google Scholar 

  5. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP (2000) DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25:338–342

    CAS  PubMed  Google Scholar 

  6. Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T (2003) The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278:4035–4040

    CAS  PubMed  Google Scholar 

  7. Matarazzo MR, De Bonis ML, Strazzullo M, Cerase A, Ferraro M, Vastarelli P, Ballestar E, Esteller M, Kudo S, D’Esposito M (2007) Multiple binding of methyl-CpG and polycomb proteins in long-term gene silencing events. J Cell Physiol 210:711–719

    CAS  PubMed  Google Scholar 

  8. Larsen F, Gundersen G, Lopez R, Prydz H (1992) CpG islands as gene markers in the human genome. Genomics 13:1095–1107

    CAS  PubMed  Google Scholar 

  9. Coulondre C, Miller JH, Farabaugh PJ, Gilbert W (1978) Molecular basis of base substitution hotspots in Escherichia coli. Nature 274:775–780

    CAS  PubMed  Google Scholar 

  10. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    CAS  PubMed  Google Scholar 

  11. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    CAS  PubMed  Google Scholar 

  12. Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 99:3740–3745

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Yoshikawa T, Takata A, Otsuka M, Kishikawa T, Kojima K, Yoshida H, Koike K (2012) Silencing of microRNA-122 enhances interferon-alpha signaling in the liver through regulating SOCS3 promoter methylation. Sci Rep 2:637

    PubMed Central  PubMed  Google Scholar 

  14. Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    CAS  PubMed  Google Scholar 

  15. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    CAS  PubMed  Google Scholar 

  17. Calin GA, Croce CM (2006) MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66:7390–7394

    CAS  PubMed  Google Scholar 

  18. Esteller M (2007) Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet 16(1):R50–R59

    CAS  PubMed  Google Scholar 

  19. Saetrom P, Snove O Jr, Rossi JJ (2007) Epigenetics and microRNAs. Pediatr Res 61:17R–23R

    CAS  PubMed  Google Scholar 

  20. Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38:465–475

    CAS  PubMed  Google Scholar 

  21. Sato F, Tsuchiya S, Meltzer SJ, Shimizu K (2011) MicroRNAs and epigenetics. FEBS J 278:1598–1609

    CAS  PubMed  Google Scholar 

  22. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443

    CAS  PubMed  Google Scholar 

  23. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F, Casado S, Suarez-Gauthier A, Sanchez-Cespedes M, Git A, Spiteri I, Das PP, Caldas C, Miska E, Esteller M (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67:1424–1429

    CAS  PubMed  Google Scholar 

  24. Ru P, Steele R, Hsueh EC, Ray RB (2011) Anti-miR-203 upregulates SOCS3 expression in breast cancer cells and enhances cisplatin chemosensitivity. Genes Cancer 2:720–727

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Kornfeld JW, Baitzel C, Konner AC, Nicholls HT, Vogt MC, Herrmanns K, Scheja L, Haumaitre C, Wolf AM, Knippschild U, Seibler J, Cereghini S, Heeren J, Stoffel M, Bruning JC (2013) Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 494:111–115

    CAS  PubMed  Google Scholar 

  26. Ma N, Wang X, Qiao Y, Li F, Hui Y, Zou C, Jin J, Lv G, Peng Y, Wang L, Huang H, Zhou L, Zheng X, Gao X (2011) Coexpression of an intronic microRNA and its host gene reveals a potential role for miR-483-5p as an IGF2 partner. Mol Cell Endocrinol 333:96–101

    CAS  PubMed  Google Scholar 

  27. Lin S, Li H, Mu H, Luo W, Li Y, Jia X, Wang S, Jia X, Nie Q, Li Y, Zhang X (2012) Let-7b regulates the expression of the growth hormone receptor gene in deletion-type dwarf chickens. BMC Genomics 13:306

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Surdziel E, Cabanski M, Dallmann I, Lyszkiewicz M, Krueger A, Ganser A, Scherr M, Eder M (2011) Enforced expression of miR-125b affects myelopoiesis by targeting multiple signaling pathways. Blood 117:4338–4348

    CAS  PubMed  Google Scholar 

  29. Bakre A, Mitchell P, Coleman JK, Jones LP, Saavedra G, Teng M, Tompkins SM, Tripp RA (2012) Respiratory syncytial virus modifies microRNAs regulating host genes that affect virus replication. J Gen Virol 93:2346–2356

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Zhou H, Park S, Housman J, Elia L, Lim B-K, Yajima T (2009) MicroRNA-19a (miR-19a) regulates gp130 signaling by inhibiting suppressor of cytokine signaling-3 (SOCS3) protein translation. Circulation 120:S835

    Google Scholar 

  31. Gupta GK, Dhar K, Del Core MG, Hunter WJ 3rd, Hatzoudis GI, Agrawal DK (2011) Suppressor of cytokine signaling-3 and intimal hyperplasia in porcine coronary arteries following coronary intervention. Exp Mol Pathol 91:346–352

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Dhar K, Rakesh K, Pankajakshan D, Agrawal DK (2013) SOCS3 promotor hypermethylation and STAT3-NF-kB interaction downregulate SOCS3 expression in human coronary artery smooth muscle cells. Am J Physiol Heart Circ Physiol 304:H776

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Li Y, Deuring J, Peppelenbosch MP, Kuipers EJ, de Haar C, van der Woude CJ (2012) IL-6-induced DNMT1 activity mediates SOCS3 promoter hypermethylation in ulcerative colitis-related colorectal cancer. Carcinogenesis 33:1889–1896

    CAS  PubMed  Google Scholar 

  34. He B, You L, Uematsu K, Matsangou M, Xu Z, He M, McCormick F, Jablons DM (2003) Cloning and characterization of a functional promoter of the human SOCS-3 gene. Biochem Biophys Res Commun 301:386–391

    CAS  PubMed  Google Scholar 

  35. He B, You L, Uematsu K, Zang K, Xu Z, Lee AY, Costello JF, McCormick F, Jablons DM (2003) SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. Proc Natl Acad Sci USA 100:14133–14138

    PubMed Central  CAS  PubMed  Google Scholar 

  36. He B, You L, Xu Z, Mazieres J, Lee AY, Jablons DM (2004) Activity of the suppressor of cytokine signaling-3 promoter in human non-small-cell lung cancer. Clin Lung Cancer 5:366–370

    CAS  PubMed  Google Scholar 

  37. Weber A, Hengge UR, Bardenheuer W, Tischoff I, Sommerer F, Markwarth A, Dietz A, Wittekind C, Tannapfel A (2005) SOCS-3 is frequently methylated in head and neck squamous cell carcinoma and its precursor lesions and causes growth inhibition. Oncogene 24:6699–6708

    CAS  PubMed  Google Scholar 

  38. Isomoto H (2009) Epigenetic alterations in cholangiocarcinoma-sustained IL-6/STAT3 signaling in cholangio-carcinoma due to SOCS3 epigenetic silencing. Digestion 79(Suppl 1):2–8

    CAS  PubMed  Google Scholar 

  39. Martini M, Pallini R, Luongo G, Cenci T, Lucantoni C, Larocca LM (2008) Prognostic relevance of SOCS3 hypermethylation in patients with glioblastoma multiforme. Int J Cancer 123:2955–2960

    CAS  PubMed  Google Scholar 

  40. Lindemann C, Hackmann O, Delic S, Schmidt N, Reifenberger G, Riemenschneider MJ (2011) SOCS3 promoter methylation is mutually exclusive to EGFR amplification in gliomas and promotes glioma cell invasion through STAT3 and FAK activation. Acta Neuropathol 122:241–251

    CAS  PubMed  Google Scholar 

  41. Feng Y, Wang Z, Bao Z, Yan W, You G, Wang Y, Hu H, Zhang W, Zhang Q, Jiang T (2014) SOCS3 promoter hypermethylation is a favorable prognosticator and a novel indicator for G-CIMP-positive GBM patients. PLoS ONE 9:e91829

    PubMed Central  PubMed  Google Scholar 

  42. Tokita T, Maesawa C, Kimura T, Kotani K, Takahashi K, Akasaka T, Masuda T (2007) Methylation status of the SOCS3 gene in human malignant melanomas. Int J Oncol 30:689–694

    CAS  PubMed  Google Scholar 

  43. Tischoff I, Hengge UR, Vieth M, Ell C, Stolte M, Weber A, Schmidt WE, Tannapfel A (2007) Methylation of SOCS-3 and SOCS-1 in the carcinogenesis of Barrett’s adenocarcinoma. Gut 56:1047–1053

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Niwa Y, Kanda H, Shikauchi Y, Saiura A, Matsubara K, Kitagawa T, Yamamoto J, Kubo T, Yoshikawa H (2005) Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene 24:6406–6417

    CAS  PubMed  Google Scholar 

  45. Berger H, Vegran F, Chikh M, Gilardi F, Ladoire S, Bugaut H, Mignot G, Chalmin F, Bruchard M, Derangere V, Chevriaux A, Rebe C, Ryffel B, Pot C, Hichami A, Desvergne B, Ghiringhelli F, Apetoh L (2013) SOCS3 transactivation by PPARgamma prevents IL-17-driven cancer growth. Cancer Res 73:3578–3590

    CAS  PubMed  Google Scholar 

  46. Wilop S, van Gemmeren TB, Lentjes MH, van Engeland M, Herman JG, Brummendorf TH, Jost E, Galm O (2011) Methylation-associated dysregulation of the suppressor of cytokine signaling-3 gene in multiple myeloma. Epigenetics 6:1047–1052

    CAS  PubMed  Google Scholar 

  47. Liang P, Cheng SH, Cheng CK, Lau KM, Lin SY, Chow EY, Chan NP, Ip RK, Wong RS, Ng MH (2013) Platelet factor 4 induces cell apoptosis by inhibition of STAT3 via up-regulation of SOCS3 expression in multiple myeloma. Haematologica 98:288–295

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Takeuchi K, Sakai I, Narumi H, Yasukawa M, Kojima K, Minamoto Y, Fujisaki T, Tanimoto K, Hara M, Numata A, Gondo H, Takahashi M, Fujii N, Masuda K, Fujita S (2005) Expression of SOCS3 mRNA in bone marrow cells from CML patients associated with cytogenetic response to IFN-alpha. Leuk Res 29:173–178

    CAS  PubMed  Google Scholar 

  49. Fodermayr M, Zach O, Huber M, Machherndl-Spandl S, Wolfl S, Bosmuller HC, Hasenschwandtner S, Burgstaller S, Krieger O, Lutz D, Weltermann A, Hauser H (2012) The clinical impact of DNA methylation frequencies of JAK2 negative regulators in patients with essential thrombocythemia. Leuk Res 36:588–590

    PubMed  Google Scholar 

  50. Fourouclas N, Li J, Gilby DC, Campbell PJ, Beer PA, Boyd EM, Goodeve AC, Bareford D, Harrison CN, Reilly JT, Green AR, Bench AJ (2008) Methylation of the suppressor of cytokine signaling 3 gene (SOCS3) in myeloproliferative disorders. Haematologica 93:1635–1644

    CAS  PubMed  Google Scholar 

  51. Teofili L, Martini M, Cenci T, Guidi F, Torti L, Giona F, Foa R, Leone G, Larocca LM (2008) Epigenetic alteration of SOCS family members is a possible pathogenetic mechanism in JAK2 wild type myeloproliferative diseases. Int J Cancer 123:1586–1592

    CAS  PubMed  Google Scholar 

  52. Zhang MY, Fung TK, Chen FY, Chim CS (2013) Methylation profiling of SOCS1, SOCS2, SOCS3, CISH and SHP1 in Philadelphia-negative myeloproliferative neoplasm. J Cell Mol Med 17:1282–1290

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Yu J, Zhao L, Yao S, He C, Li H, Kong X (2011) Expression of SOCS-3 and its methylation in renal cancer. Chem Res Chin Univ 27(3):464

    CAS  Google Scholar 

  54. Pierconti F, Martini M, Pinto F, Cenci T, Capodimonti S, Calarco A, Bassi PF, Larocca LM (2011) Epigenetic silencing of SOCS3 identifies a subset of prostate cancer with an aggressive behavior. Prostate 71:318–325

    CAS  PubMed  Google Scholar 

  55. Middeldorf I, Galm O, Osieka R, Jost E, Herman JG, Wilop S (2010) Sequence of administration and methylation of SOCS3 may govern response to gemtuzumab ozogamicin in combination with conventional chemotherapy in patients with refractory or relapsed acute myelogenous leukemia (AML). Am J Hematol 85:477–481

    CAS  PubMed  Google Scholar 

  56. Isomoto H, Mott JL, Kobayashi S, Werneburg NW, Bronk SF, Haan S, Gores GJ (2007) Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing. Gastroenterology 132:384–396

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Kubo M, Inoue H (2006) Suppressor of cytokine signaling 3 (SOCS3) in Th2 cells evokes Th2 cytokines, IgE, and eosinophilia. Curr Allergy Asthma Rep 6:32–39

    CAS  PubMed  Google Scholar 

  58. Seki Y, Inoue H, Nagata N, Hayashi K, Fukuyama S, Matsumoto K, Komine O, Hamano S, Himeno K, Inagaki-Ohara K, Cacalano N, O’Garra A, Oshida T, Saito H, Johnston JA, Yoshimura A, Kubo M (2003) SOCS-3 regulates onset and maintenance of T(H)2-mediated allergic responses. Nat Med 9:1047–1054

    CAS  PubMed  Google Scholar 

  59. Kubo M, Hanada T, Yoshimura A (2003) Suppressors of cytokine signaling and immunity. Nat Immunol 4:1169–1176

    CAS  PubMed  Google Scholar 

  60. Eriksen KW, Woetmann A, Skov L, Krejsgaard T, Bovin LF, Hansen ML, Gronbaek K, Billestrup N, Nissen MH, Geisler C, Wasik MA, Odum N (2010) Deficient SOCS3 and SHP-1 expression in psoriatic T cells. J Invest Dermatol 130:1590–1597

    CAS  PubMed  Google Scholar 

  61. Trowbridge RM, Pittelkow MR (2014) Epigenetics in the pathogenesis and pathophysiology of psoriasis vulgaris. J Drugs Dermatol 13:111–118

    CAS  PubMed  Google Scholar 

  62. Gupta GK, Agrawal T, DelCore MG, Mohiuddin SM, Agrawal DK (2012) Vitamin D deficiency induces cardiac hypertrophy and inflammation in epicardial adipose tissue in hypercholesterolemic swine. Exp Mol Pathol 93:82–90

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Yasukawa H, Hoshijima M, Gu Y, Nakamura T, Pradervand S, Hanada T, Hanakawa Y, Yoshimura A, Ross J Jr, Chien KR (2001) Suppressor of cytokine signaling-3 is a biomechanical stress-inducible gene that suppresses gp130-mediated cardiac myocyte hypertrophy and survival pathways. J Clin Invest 108:1459–1467

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Yajima T, Murofushi Y, Zhou H, Park S, Housman J, Zhong ZH, Nakamura M, Machida M, Hwang KK, Gu Y, Dalton ND, Yajima T, Yasukawa H, Peterson KL, Knowlton KU (2011) Absence of SOCS3 in the cardiomyocyte increases mortality in a gp130-dependent manner accompanied by contractile dysfunction and ventricular arrhythmias. Circulation 124:2690–2701

    PubMed Central  PubMed  Google Scholar 

  65. Mishra V, Sharma R, Chattopadhyay B, Paul BN (2011) Epigenetic modification of suppressor of cytokine signaling-3 in asthmatic mouse lung: role of interleukin-6. J Appl Pharm Sci 01(05):81

    Google Scholar 

  66. Verma M, Chattopadhyay BD, Kumar S, Kumar K, Verma D (2014) DNA methyltransferase 1(DNMT1) induced the expression of suppressors of cytokine signaling3 (Socs3) in a mouse model of asthma. Mol Biol Rep 41:4413–4424

    CAS  PubMed  Google Scholar 

  67. Verma M, Chattopadhyay BD, Paul BN (2013) Epigenetic regulation of DNMT1 gene in mouse model of asthma disease. Mol Biol Rep 40:2357–2368

    CAS  PubMed  Google Scholar 

  68. Zafra MP, Mazzeo C, Gamez C, Marco AR, de Zulueta A, Sanz V, Bilbao I, Ruiz-Cabello J, Zubeldia JM, del Pozo V (2014) Gene silencing of SOCS3 by siRNA intranasal delivery inhibits asthma phenotype in mice. PLoS ONE 9:e91996

    PubMed  Google Scholar 

  69. Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, Van Obberghen E (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275:15985–15991

    CAS  PubMed  Google Scholar 

  70. Mashili F, Chibalin AV, Krook A, Zierath JR (2013) Constitutive STAT3 phosphorylation contributes to skeletal muscle insulin resistance in type 2 diabetes. Diabetes 62:457–465

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Jiang C, Kim JH, Li F, Qu A, Gavrilova O, Shah YM, Gonzalez FJ (2013) Hypoxia-inducible factor 1alpha regulates a SOCS3-STAT3-adiponectin signal transduction pathway in adipocytes. J Biol Chem 288:3844–3857

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Wang C, Dai J, Yang M, Deng G, Xu S, Jia Y, Boden G, Ma ZA, Yang G, Li L (2014) Silencing of FGF-21 expression promotes hepatic gluconeogenesis and glycogenolysis by regulation of the STAT3-SOCS3 signal. FEBS J 281:2136–2147

    CAS  PubMed  Google Scholar 

  73. Ghosh A, Pahan K (2012) Gemfibrozil, a lipid-lowering drug, induces suppressor of cytokine signaling 3 in glial cells: implications for neurodegenerative disorders. J Biol Chem 287:27189–27203

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Bode JG, Ludwig S, Ehrhardt C, Albrecht U, Erhardt A, Schaper F, Heinrich PC, Haussinger D (2003) IFN-alpha antagonistic activity of HCV core protein involves induction of suppressor of cytokine signaling-3. FASEB J 17:488–490

    CAS  PubMed  Google Scholar 

  75. Blalock EL, Chien H, Dix RD (2013) Murine cytomegalovirus downregulates interleukin-17 in mice with retrovirus-induced immunosuppression that are susceptible to experimental cytomegalovirus retinitis. Cytokine 61:862–875

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Navid F, Yu C, Dambuza I, Frank GM, Egwuagu CE (2013) STAT3/SOCS3 axis modulates CD8-mediated host immunity against HSV-1. Invest Ophthalmol Vis Sci 54:5989

    Google Scholar 

  77. Boe A, Baiocchi M, Carbonatto M, Papoian R, Serlupi-Crescenzi O (1999) Interleukin 6 knock-out mice are resistant to antigen-induced experimental arthritis. Cytokine 11:1057–1064

    CAS  PubMed  Google Scholar 

  78. Shouda T, Yoshida T, Hanada T, Wakioka T, Oishi M, Miyoshi K, Komiya S, Kosai K, Hanakawa Y, Hashimoto K, Nagata K, Yoshimura A (2001) Induction of the cytokine signal regulator SOCS3/CIS3 as a therapeutic strategy for treating inflammatory arthritis. J Clin Invest 108:1781–1788

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Li X, Liu H, Qin L, Tamasi J, Bergenstock M, Shapses S, Feyen JH, Notterman DA, Partridge NC (2007) Determination of dual effects of parathyroid hormone on skeletal gene expression in vivo by microarray and network analysis. J Biol Chem 282:33086–33097

    CAS  PubMed  Google Scholar 

  80. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA (2004) JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 18:189–218

    CAS  PubMed  Google Scholar 

  81. Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281–1283

    CAS  PubMed  Google Scholar 

  82. Cacalano NA, Sanden D, Johnston JA (2001) Tyrosine-phosphorylated SOCS-3 inhibits STAT activation but binds to p120 RasGAP and activates Ras. Nat Cell Biol 3:460–465

    CAS  PubMed  Google Scholar 

  83. Babon JJ, Kershaw NJ, Murphy JM, Varghese LN, Laktyushin A, Young SN, Lucet IS, Norton RS, Nicola NA (2012) Suppression of cytokine signaling by SOCS3: characterization of the mode of inhibition and the basis of its specificity. Immunity 36:239–250

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Sasaki A, Yasukawa H, Suzuki A, Kamizono S, Syoda T, Kinjyo I, Sasaki M, Johnston JA, Yoshimura A (1999) Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes Cells 4:339–351

    CAS  PubMed  Google Scholar 

  85. Feng J, Witthuhn BA, Matsuda T, Kohlhuber F, Kerr IM, Ihle JN (1997) Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol 17:2497–2501

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Gao Y, Cimica V, Reich NC (2012) Suppressor of cytokine signaling 3 inhibits breast tumor kinase activation of STAT3. J Biol Chem 287:20904–20912

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Pirvulescu M, Manduteanu I, Gan AM, Stan D, Simion V, Butoi E, Calin M, Simionescu M (2012) A novel pro-inflammatory mechanism of action of resistin in human endothelial cells: up-regulation of SOCS3 expression through STAT3 activation. Biochem Biophys Res Commun 422:321–326

    CAS  PubMed  Google Scholar 

  88. Bluyssen HA, Rastmanesh MM, Tilburgs C, Jie K, Wesseling S, Goumans MJ, Boer P, Joles JA, Braam B (2010) IFN gamma-dependent SOCS3 expression inhibits IL-6-induced STAT3 phosphorylation and differentially affects IL-6 mediated transcriptional responses in endothelial cells. Am J Physiol Cell Physiol 299:C354–C362

    CAS  PubMed  Google Scholar 

  89. Yu A, Zhu L, Altman NH, Malek TR (2009) A low interleukin-2 receptor signaling threshold supports the development and homeostasis of T regulatory cells. Immunity 30:204–217

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Yamada O, Ozaki K, Akiyama M, Kawauchi K (2012) JAK-STAT and JAK-PI3K-mTORC1 pathways regulate telomerase transcriptionally and posttranslationally in ATL cells. Mol Cancer Ther 11:1112–1121

    CAS  PubMed  Google Scholar 

  91. Riehle KJ, Campbell JS, McMahan RS, Johnson MM, Beyer RP, Bammler TK, Fausto N (2008) Regulation of liver regeneration and hepatocarcinogenesis by suppressor of cytokine signaling 3. J Exp Med 205:91–103

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Winston LA, Hunter T (1995) JAK2, Ras, and Raf are required for activation of extracellular signal-regulated kinase/mitogen-activated protein kinase by growth hormone. J Biol Chem 270:30837–30840

    CAS  PubMed  Google Scholar 

  93. Puhr M, Santer FR, Neuwirt H, Susani M, Nemeth JA, Hobisch A, Kenner L, Culig Z (2009) Down-regulation of suppressor of cytokine signaling-3 causes prostate cancer cell death through activation of the extrinsic and intrinsic apoptosis pathways. Cancer Res 69:7375–7384

    CAS  PubMed  Google Scholar 

  94. Jenkins BJ, Grail D, Nheu T, Najdovska M, Wang B, Waring P, Inglese M, McLoughlin RM, Jones SA, Topley N, Baumann H, Judd LM, Giraud AS, Boussioutas A, Zhu HJ, Ernst M (2005) Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF-beta signaling. Nat Med 11:845–852

    CAS  PubMed  Google Scholar 

  95. Ogata H, Kobayashi T, Chinen T, Takaki H, Sanada T, Minoda Y, Koga K, Takaesu G, Maehara Y, Iida M, Yoshimura A (2006) Deletion of the SOCS3 gene in liver parenchymal cells promotes hepatitis-induced hepatocarcinogenesis. Gastroenterology 131:179–193

    CAS  PubMed  Google Scholar 

  96. Liu E, Cote JF, Vuori K (2003) Negative regulation of FAK signaling by SOCS proteins. EMBO J 22:5036–5046

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Chen KC, Wang YS, Hu CY, Chang WC, Liao YC, Dai CY, Juo SH (2011) OxLDL up-regulates microRNA-29b, leading to epigenetic modifications of MMP-2/MMP-9 genes: a novel mechanism for cardiovascular diseases. FASEB J 25:1718–1728

    CAS  PubMed  Google Scholar 

  98. Wang YS, Chou WW, Chen KC, Cheng HY, Lin RT, Juo SH (2012) MicroRNA-152 mediates DNMT1-regulated DNA methylation in the estrogen receptor alpha gene. PLoS ONE 7:e30635

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Zhang Z, Zhang B, Li W, Fu L, Fu L, Zhu Z, Dong JT (2011) Epigenetic silencing of miR-203 upregulates SNAI2 and contributes to the invasiveness of malignant breast cancer cells. Genes Cancer 2:782–791

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Zeng B, Li Z, Chen R, Guo N, Zhou J, Zhou Q, Lin Q, Cheng D, Liao Q, Zheng L, Gong Y (2012) Epigenetic regulation of miR-124 by hepatitis C virus core protein promotes migration and invasion of intrahepatic cholangiocarcinoma cells by targeting SMYD3. FEBS Lett 586:3271–3278

    CAS  PubMed  Google Scholar 

  101. Tang JT, Wang JL, Du W, Hong J, Zhao SL, Wang YC, Xiong H, Chen HM, Fang JY (2011) MicroRNA 345, a methylation-sensitive microRNA is involved in cell proliferation and invasion in human colorectal cancer. Carcinogenesis 32:1207–1215

    CAS  PubMed  Google Scholar 

  102. Tanaka T, Arai M, Wu S, Kanda T, Miyauchi H, Imazeki F, Matsubara H, Yokosuka O (2011) Epigenetic silencing of microRNA-373 plays an important role in regulating cell proliferation in colon cancer. Oncol Rep 26:1329–1335

    CAS  PubMed  Google Scholar 

  103. Chen WS, Leung CM, Pan HW, Hu LY, Li SC, Ho MR, Tsai KW (2012) Silencing of miR-1-1 and miR-133a-2 cluster expression by DNA hypermethylation in colorectal cancer. Oncol Rep 28:1069–1076

    CAS  PubMed  Google Scholar 

  104. Wang F, Ma YL, Zhang P, Shen TY, Shi CZ, Yang YZ, Moyer MP, Zhang HZ, Chen HQ, Liang Y, Qin HL (2013) SP1 mediates the link between methylation of the tumour suppressor miR-149 and outcome in colorectal cancer. J Pathol 229:12–24

    CAS  PubMed  Google Scholar 

  105. Tsuruta T, Kozaki K, Uesugi A, Furuta M, Hirasawa A, Imoto I, Susumu N, Aoki D, Inazawa J (2011) miR-152 is a tumor suppressor microRNA that is silenced by DNA hypermethylation in endometrial cancer. Cancer Res 71:6450–6462

    CAS  PubMed  Google Scholar 

  106. Li X, Lin R, Li J (2011) Epigenetic silencing of microRNA-375 regulates PDK1 expression in esophageal cancer. Dig Dis Sci 56:2849–2856

    CAS  PubMed  Google Scholar 

  107. Jia Y, Yang Y, Zhan Q, Brock MV, Zheng X, Yu Y, Herman JG, Guo M (2012) Inhibition of SOX17 by microRNA 141 and methylation activates the WNT signaling pathway in esophageal cancer. J Mol Diagn 14:577–585

    CAS  PubMed  Google Scholar 

  108. Asuthkar S, Velpula KK, Chetty C, Gorantla B, Rao JS (2012) Epigenetic regulation of miRNA-211 by MMP-9 governs glioma cell apoptosis, chemosensitivity and radiosensitivity. Oncotarget 3:1439–1454

    PubMed Central  PubMed  Google Scholar 

  109. Wei X, Xiang T, Ren G, Tan C, Liu R, Xu X, Wu Z (2013) miR-101 is down-regulated by the hepatitis B virus x protein and induces aberrant DNA methylation by targeting DNA methyltransferase 3A. Cell Signal 25:439–446

    CAS  PubMed  Google Scholar 

  110. Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J (2010) miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis 31:766–776

    CAS  PubMed  Google Scholar 

  111. Chen Y, Gao W, Luo J, Tian R, Sun H, Zou S (2011) Methyl-CpG binding protein MBD2 is implicated in methylation-mediated suppression of miR-373 in hilar cholangiocarcinoma. Oncol Rep 25:443–451

    CAS  PubMed  Google Scholar 

  112. Gao XN, Lin J, Li YH, Gao L, Wang XR, Wang W, Kang HY, Yan GT, Wang LL, Yu L (2011) MicroRNA-193a represses c-kit expression and functions as a methylation-silenced tumor suppressor in acute myeloid leukemia. Oncogene 30:3416–3428

    CAS  PubMed  Google Scholar 

  113. Li Y, Gao L, Luo X, Wang L, Gao X, Wang W, Sun J, Dou L, Li J, Xu C, Wang L, Zhou M, Jiang M, Zhou J, Caligiuri MA, Nervi C, Bloomfield CD, Marcucci G, Yu L (2013) Epigenetic silencing of microRNA-193a contributes to leukemogenesis in t(8;21) acute myeloid leukemia by activating the PTEN/PI3K signal pathway. Blood 121:499–509

    CAS  PubMed  Google Scholar 

  114. Dou L, Zheng D, Li J, Li Y, Gao L, Wang L, Yu L (2012) Methylation-mediated repression of microRNA-143 enhances MLL-AF4 oncogene expression. Oncogene 31:507–517

    CAS  PubMed  Google Scholar 

  115. Siemens H, Neumann J, Jackstadt R, Mansmann U, Horst D, Kirchner T, Hermeking H (2013) Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and beta-catenin predicts distant metastasis of colon cancer. Clin Cancer Res 19:710–720

    CAS  PubMed  Google Scholar 

  116. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104:15805–15810

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Zhao S, Wang Y, Liang Y, Zhao M, Long H, Ding S, Yin H, Lu Q (2011) MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum 63:1376–1386

    CAS  PubMed  Google Scholar 

  118. Zhang X, Zhao X, Fiskus W, Lin J, Lwin T, Rao R, Zhang Y, Chan JC, Fu K, Marquez VE, Chen-Kiang S, Moscinski LC, Seto E, Dalton WS, Wright KL, Sotomayor E, Bhalla K, Tao J (2012) Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-Cell lymphomas. Cancer Cell 22:506–523

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Asangani IA, Harms PW, Dodson L, Pandhi M, Kunju LP, Maher CA, Fullen DR, Johnson TM, Giordano TJ, Palanisamy N, Chinnaiyan AM (2012) Genetic and epigenetic loss of microRNA-31 leads to feed-forward expression of EZH2 in melanoma. Oncotarget 3:1011–1025

    PubMed Central  PubMed  Google Scholar 

  120. Vogt M, Munding J, Gruner M, Liffers ST, Verdoodt B, Hauk J, Steinstraesser L, Tannapfel A, Hermeking H (2011) Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch 458:313–322

    PubMed  Google Scholar 

  121. Wong KY, Liang R, So CC, Jin DY, Costello JF, Chim CS (2011) Epigenetic silencing of MIR203 in multiple myeloma. Br J Haematol 154:569–578

    CAS  PubMed  Google Scholar 

  122. Dickstein J, Senyuk V, Premanand K, Laricchia-Robbio L, Xu P, Cattaneo F, Fazzina R, Nucifora G (2010) Methylation and silencing of miRNA-124 by EVI1 and self-renewal exhaustion of hematopoietic stem cells in murine myelodysplastic syndrome. Proc Natl Acad Sci USA 107:9783–9788

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Das S, Bryan K, Buckley PG, Piskareva O, Bray IM, Foley N, Ryan J, Lynch J, Creevey L, Fay J, Prenter S, Koster J, van Sluis P, Versteeg R, Eggert A, Schulte JH, Schramm A, Mestdagh P, Vandesompele J, Speleman F, Stallings RL (2013) Modulation of neuroblastoma disease pathogenesis by an extensive network of epigenetically regulated microRNAs. Oncogene 32:2927–2936

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Wang P, Chen L, Zhang J, Chen H, Fan J, Wang K, Luo J, Chen Z, Meng Z, Liu L (2014) Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene 33:514–524

    CAS  PubMed  Google Scholar 

  125. Li Y, Kong D, Ahmad A, Bao B, Dyson G, Sarkar FH (2012) Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics 7:940–949

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS, Chang I, Yamamura S, Tanaka Y, Chiyomaru T, Deng G, Dahiya R (2013) miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin Cancer Res 19:73–84

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Lin PC, Chiu YL, Banerjee S, Park K, Mosquera JM, Giannopoulou E, Alves P, Tewari AK, Gerstein MB, Beltran H, Melnick AM, Elemento O, Demichelis F, Rubin MA (2013) Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression. Cancer Res 73:1232–1244

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Minor J, Wang X, Zhang F, Song J, Jimeno A, Wang XJ, Lu X, Gross N, Kulesz-Martin M, Wang D, Lu SL (2012) Methylation of microRNA-9 is a specific and sensitive biomarker for oral and oropharyngeal squamous cell carcinomas. Oral Oncol 48:73–78

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Wada R, Akiyama Y, Hashimoto Y, Fukamachi H, Yuasa Y (2010) miR-212 is downregulated and suppresses methyl-CpG-binding protein MeCP2 in human gastric cancer. Int J Cancer 127:1106–1114

    CAS  PubMed  Google Scholar 

  130. Hashimoto Y, Akiyama Y, Otsubo T, Shimada S, Yuasa Y (2010) Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis. Carcinogenesis 31:777–784

    CAS  PubMed  Google Scholar 

  131. Kim K, Lee HC, Park JL, Kim M, Kim SY, Noh SM, Song KS, Kim JC, Kim YS (2011) Epigenetic regulation of microRNA-10b and targeting of oncogenic MAPRE1 in gastric cancer. Epigenetics 6:740–751

    CAS  PubMed  Google Scholar 

  132. Bao W, Fu HJ, Xie QS, Wang L, Zhang R, Guo ZY, Zhao J, Meng YL, Ren XL, Wang T, Li Q, Jin BQ, Yao LB, Wang RA, Fan DM, Chen SY, Jia LT, Yang AG (2011) HER2 interacts with CD44 to up-regulate CXCR4 via epigenetic silencing of microRNA-139 in gastric cancer cells. Gastroenterology 141(2076–2087):e6

    PubMed  Google Scholar 

  133. Deng H, Guo Y, Song H, Xiao B, Sun W, Liu Z, Yu X, Xia T, Cui L, Guo J (2013) MicroRNA-195 and microRNA-378 mediate tumor growth suppression by epigenetical regulation in gastric cancer. Gene 518:351–359

    CAS  PubMed  Google Scholar 

  134. Frobose H, Ronn SG, Heding PE, Mendoza H, Cohen P, Mandrup-Poulsen T, Billestrup N (2006) Suppressor of cytokine signaling-3 inhibits interleukin-1 signaling by targeting the TRAF-6/TAK1 complex. Mol Endocrinol 20:1587–1596

    PubMed  Google Scholar 

  135. Matsumoto A, Seki Y, Watanabe R, Hayashi K, Johnston JA, Harada Y, Abe R, Yoshimura A, Kubo M (2003) A role of suppressor of cytokine signaling 3 (SOCS3/CIS3/SSI3) in CD28-mediated interleukin 2 production. J Exp Med 197:425–436

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Orr SJ, Morgan NM, Buick RJ, Boyd CR, Elliott J, Burrows JF, Jefferies CA, Crocker PR, Johnston JA (2007) SOCS3 targets Siglec 7 for proteasomal degradation and blocks Siglec 7-mediated responses. J Biol Chem 282:3418–3422

    CAS  PubMed  Google Scholar 

  137. Ratthe C, Pelletier M, Chiasson S, Girard D (2007) Molecular mechanisms involved in interleukin-4-induced human neutrophils: expression and regulation of suppressor of cytokine signaling. J Leukoc Biol 81:1287–1296

    CAS  PubMed  Google Scholar 

  138. Ratthe C, Girard D (2008) Investigation of the interleukin (IL)-4/IL-4 receptor system in promyelocytic leukaemia PLB-985 cells during differentiation toward neutrophil-like phenotype: mechanism involved in IL-4-induced SOCS3 protein expression. Br J Haematol 140:59–70

    CAS  PubMed  Google Scholar 

  139. Kim D, Kim SH, Cho SH, Shin K, Kim S (2011) SOCS3 suppresses the expression of IL-4 cytokine by inhibiting the phosphorylation of c-Jun through the ERK signaling pathway in rat mast cell line RBL-2H3. Mol Immunol 48:776–781

    CAS  PubMed  Google Scholar 

  140. Yan C, Cao J, Wu M, Zhang W, Jiang T, Yoshimura A, Gao H (2010) Suppressor of cytokine signaling 3 inhibits LPS-induced IL-6 expression in osteoblasts by suppressing CCAAT/enhancer-binding protein beta activity. J Biol Chem 285:37227–37239

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Pellegrini M, Calzascia T, Toe JG, Preston SP, Lin AE, Elford AR, Shahinian A, Lang PA, Lang KS, Morre M, Assouline B, Lahl K, Sparwasser T, Tedder TF, Paik JH, DePinho RA, Basta S, Ohashi PS, Mak TW (2011) IL-7 engages multiple mechanisms to overcome chronic viral infection and limit organ pathology. Cell 144:601–613

    CAS  PubMed  Google Scholar 

  142. Pothlichet J, Chignard M, Si-Tahar M (2008) Cutting edge: innate immune response triggered by influenza A virus is negatively regulated by SOCS1 and SOCS3 through a RIG-I/IFNAR1-dependent pathway. J Immunol 180:2034–2038

    CAS  PubMed  Google Scholar 

  143. Lejeune D, Demoulin JB, Renauld JC (2001) Interleukin 9 induces expression of three cytokine signal inhibitors: cytokine-inducible SH2-containing protein, suppressor of cytokine signalling (SOCS)-2 and SOCS-3, but only SOCS-3 overexpression suppresses interleukin 9 signalling. Biochem J 353:109–116

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Cassatella MA, Gasperini S, Bovolenta C, Calzetti F, Vollebregt M, Scapini P, Marchi M, Suzuki R, Suzuki A, Yoshimura A (1999) Interleukin-10 (IL-10) selectively enhances CIS3/SOCS3 mRNA expression in human neutrophils: evidence for an IL-10-induced pathway that is independent of STAT protein activation. Blood 94:2880–2889

    CAS  PubMed  Google Scholar 

  145. Dimitriadis E, Stoikos C, Tan YL, Salamonsen LA (2006) Interleukin 11 signaling components signal transducer and activator of transcription 3 (STAT3) and suppressor of cytokine signaling 3 (SOCS3) regulate human endometrial stromal cell differentiation. Endocrinology 147:3809–3817

    CAS  PubMed  Google Scholar 

  146. Yamamoto K, Yamaguchi M, Miyasaka N, Miura O (2003) SOCS-3 inhibits IL-12-induced STAT4 activation by binding through its SH2 domain to the STAT4 docking site in the IL-12 receptor beta2 subunit. Biochem Biophys Res Commun 310:1188–1193

    CAS  PubMed  Google Scholar 

  147. Albanesi C, Fairchild HR, Madonna S, Scarponi C, De Pita O, Leung DY, Howell MD (2007) IL-4 and IL-13 negatively regulate TNF-alpha- and IFN-gamma-induced beta-defensin expression through STAT-6, suppressor of cytokine signaling (SOCS)-1, and SOCS-3. J Immunol 179:984–992

    CAS  PubMed  Google Scholar 

  148. Masuda A, Matsuguchi T, Yamaki K, Hayakawa T, Kubo M, LaRochelle WJ, Yoshikai Y (2000) Interleukin-15 induces rapid tyrosine phosphorylation of STAT6 and the expression of interleukin-4 in mouse mast cells. J Biol Chem 275:29331–29337

    CAS  PubMed  Google Scholar 

  149. Kleinsteuber K, Heesch K, Schattling S, Sander-Juelch C, Mock U, Riecken K, Fehse B, Fleischer B, Jacobsen M (2012) SOCS3 promotes interleukin-17 expression of human T cells. Blood 120:4374–4382

    CAS  PubMed  Google Scholar 

  150. Chen Z, Laurence A, Kanno Y, Pacher-Zavisin M, Zhu BM, Tato C, Yoshimura A, Hennighausen L, O’Shea JJ (2006) Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc Natl Acad Sci USA 103:8137–8142

    PubMed Central  CAS  PubMed  Google Scholar 

  151. Uchida T, Kinoshita M, Fukasawa M, Habu Y, Shinomiya N, Seki S (2007) IL-18 time-dependently modulates Th1/Th2 cytokine production by ligand-activated NKT cells. Eur J Immunol 37:966–977

    CAS  PubMed  Google Scholar 

  152. Uto-Konomi A, Miyauchi K, Ozaki N, Motomura Y, Suzuki Y, Yoshimura A, Suzuki S, Cua D, Kubo M (2012) Dysregulation of suppressor of cytokine signaling 3 in keratinocytes causes skin inflammation mediated by interleukin-20 receptor-related cytokines. PLoS ONE 7:e40343

    PubMed Central  CAS  PubMed  Google Scholar 

  153. Huber M, Brustle A, Reinhard K, Guralnik A, Walter G, Mahiny A, von Low E, Lohoff M (2008) IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17 phenotype. Proc Natl Acad Sci USA 105:20846–20851

    PubMed Central  CAS  PubMed  Google Scholar 

  154. Nagalakshmi ML, Rascle A, Zurawski S, Menon S, de Waal Malefyt R (2004) Interleukin-22 activates STAT3 and induces IL-10 by colon epithelial cells. Int Immunopharmacol 4:679–691

    CAS  PubMed  Google Scholar 

  155. Andoh A, Shioya M, Nishida A, Bamba S, Tsujikawa T, Kim-Mitsuyama S, Fujiyama Y (2009) Expression of IL-24, an activator of the JAK1/STAT3/SOCS3 cascade, is enhanced in inflammatory bowel disease. J Immunol 183:687–695

    CAS  PubMed  Google Scholar 

  156. Caruso R, Stolfi C, Sarra M, Rizzo A, Fantini MC, Pallone F, MacDonald TT, Monteleone G (2009) Inhibition of monocyte-derived inflammatory cytokines by IL-25 occurs via p38 Map kinase-dependent induction of Socs-3. Blood 113:3512–3519

    CAS  PubMed  Google Scholar 

  157. Dambacher J, Beigel F, Zitzmann K, De Toni EN, Goke B, Diepolder HM, Auernhammer CJ, Brand S (2009) The role of the novel Th17 cytokine IL-26 in intestinal inflammation. Gut 58:1207–1217

    CAS  PubMed  Google Scholar 

  158. Owaki T, Asakawa M, Kamiya S, Takeda K, Fukai F, Mizuguchi J, Yoshimoto T (2006) IL-27 suppresses CD28-mediated [correction of medicated] IL-2 production through suppressor of cytokine signaling 3. J Immunol 176:2773–2780

    CAS  PubMed  Google Scholar 

  159. Brand S, Zitzmann K, Dambacher J, Beigel F, Olszak T, Vlotides G, Eichhorst ST, Goke B, Diepolder H, Auernhammer CJ (2005) SOCS-1 inhibits expression of the antiviral proteins 2′,5′-OAS and MxA induced by the novel interferon-lambdas IL-28A and IL-29. Biochem Biophys Res Commun 331:543–548

    CAS  PubMed  Google Scholar 

  160. Chattopadhyay S, Tracy E, Liang P, Robledo O, Rose-John S, Baumann H (2007) Interleukin-31 and oncostatin-M mediate distinct signaling reactions and response patterns in lung epithelial cells. J Biol Chem 282:3014–3026

    CAS  PubMed  Google Scholar 

  161. Dambacher J, Beigel F, Seiderer J, Haller D, Goke B, Auernhammer CJ, Brand S (2007) Interleukin 31 mediates MAP kinase and STAT1/3 activation in intestinal epithelial cells and its expression is upregulated in inflammatory bowel disease. Gut 56:1257–1265

    PubMed Central  CAS  PubMed  Google Scholar 

  162. Wang J, Nikrad MP, Phang T, Gao B, Alford T, Ito Y, Edeen K, Travanty EA, Kosmider B, Hartshorn K, Mason RJ (2011) Innate immune response to influenza A virus in differentiated human alveolar type II cells. Am J Respir Cell Mol Biol 45:582–591

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Institutes of Health research grants R01HL090580, R01HL104516, and R01HL112597 to DKA. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra K. Agrawal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boosani, C.S., Agrawal, D.K. Methylation and microRNA-mediated epigenetic regulation of SOCS3. Mol Biol Rep 42, 853–872 (2015). https://doi.org/10.1007/s11033-015-3860-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-015-3860-3

Keywords

Navigation