Molecular Biology Reports

, Volume 42, Issue 6, pp 1123–1138 | Cite as

Immuno-affinity purification of PglPGIP1, a polygalacturonase-inhibitor protein from pearl millet: studies on its inhibition of fungal polygalacturonases and role in resistance against the downy mildew pathogen

  • Sreedhara Ashok Prabhu
  • Martin Wagenknecht
  • Prasad Melvin
  • Belur Shivappa Gnanesh Kumar
  • Mariswamy Veena
  • Sekhar Shailasree
  • Bruno Maria Moerschbacher
  • Kukkundoor Ramachandra Kini


Polygalacturonase-inhibitor proteins (PGIPs) are important plant defense proteins which modulate the activity of microbial polygalacturonases (PGs) leading to elicitor accumulation. Very few studies have been carried out towards understanding the role of PGIPs in monocot host defense. Hence, present study was taken up to characterize a native PGIP from pearl millet and understand its role in resistance against downy mildew. A native glycosylated PGIP (PglPGIP1) of ~43 kDa and pI 5.9 was immunopurified from pearl millet. Comparative inhibition studies involving PglPGIP1 and its non-glycosylated form (rPglPGIP1; recombinant pearl millet PGIP produced in Escherichia coli) against two PGs, PG-II isoform from Aspergillus niger (AnPGII) and PG-III isoform from Fusarium moniliforme, showed both PGIPs to inhibit only AnPGII. The protein glycosylation was found to impact only the pH and temperature stability of PGIP, with the native form showing relatively higher stability to pH and temperature changes. Temporal accumulation of both PglPGIP1 protein (western blot and ELISA) and transcripts (real time PCR) in resistant and susceptible pearl millet cultivars showed significant Sclerospora graminicola-induced accumulation only in the incompatible interaction. Further, confocal PGIP immunolocalization results showed a very intense immuno-decoration with highest fluorescent intensities observed at the outer epidermal layer and vascular bundles in resistant cultivar only. This is the first native PGIP isolated from millets and the results indicate a role for PglPGIP1 in host defense. This could further be exploited in devising pearl millet cultivars with better pathogen resistance.


Chemical deglycosylation Confocal immunolocalization Peptide mass fingerprinting Plant–pathogen interaction Quantitative real-time PCR Two-dimensional gel electrophoresis 



The first author is thankful to the Department of Biotechnology, Government of India, European Molecular Biology Organization, Germany and Prof. Dr. Bruno Moerschbacher, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Germany for the financial support in the form of fellowships. We thank Mr. Madhusudhan, University of Mysore, Mysore, India and Prof. Francesco Favaron, Dip. Territorio e Sistemi agro-forestali, sez. Patologia Vegetale, Universita degli Studi di Padova, Viale dell_Universita 16, I-35020 Legnaro, Italy for purified AnPGII and FmPGIII clone, respectively. We also acknowledge the recognition of University of Mysore as an Institution of Excellence by the Government of India with financial support from the Ministry of Human Resource Development and University Grants Commission, India.

Supplementary material

11033_2015_3850_MOESM1_ESM.pdf (42 kb)
Supplementary material 1 (PDF 43 kb)


  1. 1.
    Bashline L, Lei L, Li S, Gu Y (2014) Cell wall, cytoskeleton, and cell expansion in higher plants. Mol Plant. doi: 10.1093/mp/ssu018 PubMedGoogle Scholar
  2. 2.
    Keegstra K (2010) Plant cell walls. Plant Physiol 154:483–486CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Vorwerk S, Somerville S, Somerville C (2004) The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci 9:203–209CrossRefPubMedGoogle Scholar
  4. 4.
    Karr A, Albersheim P (1970) Polysaccharide-degrading enzymes are unable to attack plant cell walls without prior action by a “wall-modifying enzyme”. Plant Physiol 46:69–80CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Douaiher M, Nowak E, Durand R et al (2007) Correlative analysis of Mycosphaerella graminicola pathogenicity and cell wall-degrading enzymes produced in vitro: the importance of xylanase and polygalacturonase. Plant Pathol 56:79–86CrossRefGoogle Scholar
  6. 6.
    Roper M, Greve L, Warren J et al (2007) Xylella fastidiosa requires polygalacturonase for colonization and pathogenicity in Vitis vinifera grapevines. Mol Plant Microbe Interact 20:411–419CrossRefPubMedGoogle Scholar
  7. 7.
    Jaroszuk-Scisel J, Kurek E, Słomka A et al (2011) Activities of cell wall degrading enzymes in autolyzing cultures of three Fusarium culmorum isolates: growth-promoting, deleterious and pathogenic to rye (Secale cereale). Mycologia 103:929–945CrossRefPubMedGoogle Scholar
  8. 8.
    Jia Y, Feng B, Sun W, Zhang X (2009) Polygalacturonase, pectate lyase and pectin methylesterase activity in pathogenic strains of Phytophthora capsici incubated under different conditions. J Phytopathol 157:585–591CrossRefGoogle Scholar
  9. 9.
    Sun W, Jia Y, Feng B et al (2009) Functional analysis of Pcipg2 from the straminopilous plant pathogen Phytophthora capsici. Genesis 47:535–544CrossRefPubMedGoogle Scholar
  10. 10.
    De Lorenzo G, D’Ovidio R, Cervone F (2001) The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi. Annu Rev Phytopathol 39:313–335CrossRefPubMedGoogle Scholar
  11. 11.
    Federici L, Di Matteo A, Fernandez-Recio J et al (2006) Polygalacturonase inhibiting proteins: players in plant innate immunity? Trends Plant Sci 11:65–70CrossRefPubMedGoogle Scholar
  12. 12.
    D’Ovidio R, Raiola A, Capodicasa C et al (2004) Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals sub-functionalization for defense against fungi and insects. Plant Physiol 135:2424–2435CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Schacht T, Unger C, Pich A, Wydra K (2011) Endo- and exo-polygalacturonases of Ralstonia solanacearum are inhibited by polygalacturonase-inhibiting protein (PGIP) activity in tomato stem extracts. Plant Physiol Biochem 49:377–387CrossRefPubMedGoogle Scholar
  14. 14.
    Cervone F, De Lorenzo G, Pressey R et al (1990) Can phaseolus PGIP inhibit pectic enzymes from microbes and plants? Phytochemistry 29:447–449CrossRefGoogle Scholar
  15. 15.
    Gomathi V, Gnanamanickam S (2004) Polygalacturonase-inhibiting proteins in plant defence. Curr Sci 87:1211–1217Google Scholar
  16. 16.
    Misas-Villamil J, Van der Hoorn R (2008) Enzyme-inhibitor interactions at the plant-pathogen interface. Curr Opin Plant Biol 11:380–388CrossRefPubMedGoogle Scholar
  17. 17.
    Cheng Q, Cao Y, Pan H et al (2008) Isolation and characterization of two genes encoding polygalacturonase-inhibiting protein from Populus deltoids. J Genet Genomics 35:631–638CrossRefPubMedGoogle Scholar
  18. 18.
    Shivashanker S, Thimmareddy C, Roy T (2010) Polygalacturonase inhibitor protein from anthracnose resistant and susceptible varieties of Chilli (Capsicum annuum L.). Indian J Biochem Biophys 47:243–248Google Scholar
  19. 19.
    D’Ovidio R, Mattei B, Roberti S, Bellincampi D (2004) Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant-pathogen interactions. Biochim Biophys Acta 1696:237–244CrossRefPubMedGoogle Scholar
  20. 20.
    Powell A, Van Kan J, Ten Have A et al (2000) Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol Plant Microbe Interact 13:942–950CrossRefPubMedGoogle Scholar
  21. 21.
    Manfredini C, Sicilia F, Ferrari S et al (2005) Polygalacturonase-inhibiting protein 2 of Phaseolus vulgaris inhibits BcPG1, a polygalacturonase of Botrytis cinerea important for pathogenicity, and protects transgenic plants from infection. Physiol Mol Plant Pathol 67:108–115CrossRefGoogle Scholar
  22. 22.
    Hwang B, Bae H, Lim H-S et al (2010) Overexpression of polygalacturonase-inhibiting protein 2 (PGIP2) of Chinese cabbage (Brassica rapa ssp. pekinensis) increased resistance to the bacterial pathogen Pectobacterium carotovorum ssp. carotovorum. Plant Cell Tissue Organ Cult 103:293–305CrossRefGoogle Scholar
  23. 23.
    Perez-Donoso A, Sun Q, Roper M et al (2010) Cell wall-degrading enzymes enlarge the pore size of inter-vessel pit membranes in healthy and Xylella fastidiosa-infected grapevines. Plant Physiol 152:1748–1759CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Ferrari S, Sella L, Janni M et al (2011) Transgenic expression of polygalacturonase-inhibiting proteins in Arabidopsis and wheat increases resistance to the flower pathogen Fusarium graminearum. Plant Biol 14:31–38CrossRefPubMedGoogle Scholar
  25. 25.
    Ferrari S, Galletti R, Vairo D et al (2006) Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea. Mol Plant Microbe Interact 19:931–936CrossRefPubMedGoogle Scholar
  26. 26.
    Jang S, Lee B, Kim C, Kim S et al (2003) The OsFOR1 gene encodes a polygalacturonase inhibitory protein (PGIP) that regulates floral organ number in rice. Plant Mol Biol 53:357–369CrossRefPubMedGoogle Scholar
  27. 27.
    Janni M, Bozzini T, Moscetti I et al (2013) Functional characterisation of wheat Pgip genes reveals their involvement in the local response to wounding. Plant Biol 15:1019–1024CrossRefPubMedGoogle Scholar
  28. 28.
    Janni M, Di Giovanni M, Roberti S et al (2006) Characterization of expressed Pgip genes in rice and wheat reveals similar extent of sequence variation to dicot PGIPs and identifies an active PGIP lacking an entire LRR repeat. Theor Appl Genet 113:1233–1245CrossRefPubMedGoogle Scholar
  29. 29.
    Janni M, Sella L, Favaron F et al (2008) The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Mol Plant Microbe Interact 21:171–177CrossRefPubMedGoogle Scholar
  30. 30.
    Kemp G, Bergmann C, Clay R et al (2003) Isolation of a polygalacturonase-inhibiting protein (PGIP) from wheat. Mol Plant Microbe Interact 16:955–961CrossRefPubMedGoogle Scholar
  31. 31.
    Lu L, Zhou F, Zhou Y et al (2012) Expression profile analysis of the polygalacturonase-inhibiting protein genes in rice and their responses to phytohormones and fungal infection. Plant Cell Rep 31:1173–1187CrossRefPubMedGoogle Scholar
  32. 32.
    Rajaram E, Nepolean T, Senthilvel S et al (2013) Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. BMC Genome 14:159CrossRefGoogle Scholar
  33. 33.
    Sehgal D, Rajaram V, Vadez V et al (2012) Integration of gene based markers in pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC Plant Biol 12:9CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Thakur R, Rai K, Khairwal I, Mahala R (2008) Strategy for downy mildew resistance breeding in pearl millet in India. J SAT Agric Res 6:1–11Google Scholar
  35. 35.
    Shailasree S, Kini R, Shetty H (2007) Beta-amino butyric acid-induced resistance in pearl millet to downy mildew is associated with accumulation of defense-related proteins. Australas Plant Pathol 36:204–211CrossRefGoogle Scholar
  36. 36.
    Raj S, Chaluvaraju G, Amruthesh K, Shetty H (2004) Induction of growth promotion and resistance against downy mildew on pearl millet (Pennisetum glaucum) by rhizobacteria. Plant Dis 87:380–384CrossRefGoogle Scholar
  37. 37.
    Hash C, Sharma A, Kolesnikova-Allen M et al (2006) Teamwork delivers biotechnology products to Indian small-holder crop-livestock producers: pearl millet hybrid “HHB 67 Improved” enters seed delivery pipeline. J SAT Agric Res 2:16–20Google Scholar
  38. 38.
    Raminenei R, Sadumpati V, Khareedu V, Vudem D (2014) Transgenic pearl millet male fertility restorer line (ICMP451) and hybrid (ICMH451) expressing Brassica juncea nonexpressor of pathogenesis related genes 1 (BjNPR1) exhibit resistance to downy mildew disease. PLoS One 9:e90839CrossRefGoogle Scholar
  39. 39.
    Thakur R, Shetty H, Khairwal I (2006) Pearl millet downy mildew research in India: progress and perspectives. Int Sorghum Millets Newsl 47:125–130Google Scholar
  40. 40.
    Prabhu S, Kini R, Raj S et al (2012) Polygalacturonase-inhibitor proteins in pearl millet: possible involvement in resistance against downy mildew. Acta Biochim Biophys Sin 44:415–423CrossRefPubMedGoogle Scholar
  41. 41.
    Prabhu S, Kini R, Shetty H (2012) Partial purification and characterization of polygalacturonase-inhibitor proteins from pearl millet. Afr J Biotechnol 11:7000–7008Google Scholar
  42. 42.
    Prabhu S, Singh R, Kolkenbrock S et al (2014) Experimental and bioinformatic characterisation of a recombinant polygalacturonase-inhibitor protein from pearl millet and its interaction with fungal polygalacturonases. J Exp Bot. doi: 10.1093/jxb/eru266 PubMedCentralPubMedGoogle Scholar
  43. 43.
    Wagenknecht M, Meinhardt F (2011) Copy number determination, expression analysis of genes potentially involved in replication, and stability assays of pAL1—the linear megaplasmid of Arthrobacter nitroguajacolicus Ru61a. Microbiol Res 166:14–26CrossRefPubMedGoogle Scholar
  44. 44.
    Favaron F, D’Ovidio R, Porceddu E, Alghisi P (1994) Purification and molecular characterization of a soybean polygalacturonase-inhibiting protein. Planta 195:80–87CrossRefPubMedGoogle Scholar
  45. 45.
    Shevchenko A, Tomas H, Havlis J et al (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860CrossRefPubMedGoogle Scholar
  46. 46.
    Edge A, Faltynek C, Hof L et al (1981) Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Anal Biochem 118:131–137CrossRefPubMedGoogle Scholar
  47. 47.
    Anthon G, Barret D (2002) Determination of reducing sugars with 3-methyl-2-benzothiazolinonehydrazone. Anal Biochem 305:287–289CrossRefPubMedGoogle Scholar
  48. 48.
    Deepak S, Shailasree S, Sujeeth N et al (2008) Serodiagnosis of pearl millet resistance to downy mildew by quantitating cell wall P/HRGP using polyclonal antiserum Pab-P/HRGP. Eur J Plant Pathol 121:77–85CrossRefGoogle Scholar
  49. 49.
    Livak J, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ct method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  50. 50.
    Préstamo G, Testillano P, Vicente O et al (1999) Ultrastructural distribution of a MAP kinase and transcripts in quiescent and cycling plant cells and pollen grains. J Cell Sci 112:1065–1076PubMedGoogle Scholar
  51. 51.
    Ceriotti A, Duranti M, Bollini R (1998) Effects of N-glycosylation on the folding and structure of plant proteins. J Exp Bot 49:1091–1103CrossRefGoogle Scholar
  52. 52.
    Rozen-Gagnon K, Moreland N, Ruedl C, Vasudevan S (2012) Expression and immunoaffinity purification of recombinant dengue virus 2 NS1 protein as a cleavable SUMOstar fusion. Protein Expr Purif 82:20–25CrossRefPubMedGoogle Scholar
  53. 53.
    Yao X, Li J, Deng N et al (2011) Immunoaffinity purification of α-momorcharin from bitter melon seeds (Momordica charantia). J Sep Sci 34:3092–3098CrossRefPubMedGoogle Scholar
  54. 54.
    Albersheim P, Anderson-Prouty A (1975) Carbohydrates, proteins, cell surfaces, and the biochemistry of pathogenesis. Annu Rev Plant Physiol 26:31–52CrossRefGoogle Scholar
  55. 55.
    Stotz H, Powell A, Damon S et al (1993) Molecular characterization of a polygalacturonase inhibitor from Pyrus communis L. cv. “Bartlett”. Plant Physiol 102:133–138CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Costa M, Costa J, Ricardo C (1997) A Lupinus albus root glycoprotein homologous to the polygalacturonase-inhibitor proteins. Physiol Plant 99:263–270CrossRefGoogle Scholar
  57. 57.
    Faize M, Sugiyama T, Faize L, Ishii H (2003) Polygalacturonase-inhibiting protein (PGIP) from Japanese pear: possible involvement in resistance against scab. Physiol Mol Plant Pathol 63:319–327CrossRefGoogle Scholar
  58. 58.
    Bergmann C, Cook B, Darvill A et al (1996) The effect of glycosylation of endopolygalacturonase and polygalacturonase-inhibitor protein on the production of oligo-galacturonides. Prog Biotechnol 14:275–282CrossRefGoogle Scholar
  59. 59.
    Lim J-M, Aoki K, Angel P et al (2009) Mapping glycans onto specific N-Linked glycosylation sites of Pyrus communis PGIP redefines the interface for EPG-PGIP interactions. J Proteome Res 8:673–680CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Solá R, Griebenow K (2009) Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci 98:1223–1245CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Kemp G, Stanton L, Bergmann C et al (2004) Polygalacturonase-inhibiting proteins can function as activators of polygalacturonase. Mol Plant Microbe Interact 17:888–894CrossRefPubMedGoogle Scholar
  62. 62.
    Machinandiarena M, Olivieri F, Daleo G, Oliva C (2001) Isolation and characterization of a polygalacturonase-inhibiting protein from potato leaves: accumulation in response to salicylic acid, wounding and infection. Plant Physiol Biochem 39:129–136CrossRefGoogle Scholar
  63. 63.
    Nasmith C, Jeng R, Hubbes M (2008) Targeted gene analysis in Ulmus americana and Ulmus pumila tissues. For Pathol 38:90–103CrossRefGoogle Scholar
  64. 64.
    Veronico P, Melillo M, Saponaro C et al (2011) A polygalacturonase-inhibiting protein with a role in pea defense against the cyst nematode Heterodera goettingiana. Mol Plant Pathol 12:275–287CrossRefPubMedGoogle Scholar
  65. 65.
    Kalunke RM, Janni M, Sella L et al (2011) Transcript analysis of the bean polygalacturonase inhibiting protein gene family reveals that Pvpgip2 is expressed in the whole plant and is strongly induced by pathogen infection. J Plant Pathol 93:141–148Google Scholar
  66. 66.
    Bezier A, Lambert B, Baillieul F (2002) Study of defense-related gene expression in grapevine leaves and berries infected with Botrytis cinerea. Eur J Plant Pathol 108:111–120CrossRefGoogle Scholar
  67. 67.
    Lejeune A, Constant S, Delavault P et al (2006) Involvement of a putative Lycopersicon esculentum wall-associated kinase in the early steps of tomato-Orobanche ramosa interaction. Physiol Mol Plant Pathol 69:3–12CrossRefGoogle Scholar
  68. 68.
    D’Ovidio R, Roberti S, Di Giovanni M et al (2006) The characterization of the soybean polygalacturonase-inhibiting proteins (PGIP) gene family reveals that a single member is responsible for the activity detected in soybean tissues. Planta 224:633–645CrossRefPubMedGoogle Scholar
  69. 69.
    Tomassini A, Sella L, Raiola A, Favaron F (2009) Characterization and expression of Fusarium graminearum endo-polygalacturonases in vitro and during wheat infection. Plant Pathol 58:556–564. doi: 10.1111/j.1365-3059.2008.02019.x CrossRefGoogle Scholar
  70. 70.
    Oliver R, Ipcho S (2004) Arabidopsis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens. Mol Plant Pathol 5:347–352CrossRefPubMedGoogle Scholar
  71. 71.
    Simon U, Bauer R, Rioux D et al (2005) The intercellular biotrophic leaf pathogen Cymadothea trifolii locally degrades pectins, but not cellulose or xyloglucan in cell walls of Trifolium repens. New Phytol 165:243–260CrossRefPubMedGoogle Scholar
  72. 72.
    Sharada M, Shetty S, Shetty H (1995) Infection process of Sclerospora graminicola on Pennisetum glaucum lines resistant and susceptible to downy mildew. Mycol Res 99:317–322CrossRefGoogle Scholar
  73. 73.
    Bergmann C, Ito Y, Singer D et al (1994) Polygalacturonase-inhibiting protein accumulates in Phaseolus vulgaris L. in response to wounding, elicitors and fungal infection. Plant J 5:625–634CrossRefPubMedGoogle Scholar
  74. 74.
    Devoto A, Clark A, Nuss L et al (1997) Developmental and pathogen-induced accumulation of transcripts of polygalacturonase-inhibiting protein in Phaseolus vulgaris L. Planta 202:284–292CrossRefGoogle Scholar
  75. 75.
    Di C-X, Li M, Long F et al (2009) Molecular cloning, functional analysis and localization of a novel gene encoding polygalacturonase-inhibiting protein in Chorispora bungeana. Planta 231:169–178CrossRefPubMedGoogle Scholar
  76. 76.
    De Caroli M, Lenucci M, Di Sansebastiano G-P et al (2011) Protein trafficking to the cell wall occurs through mechanisms distinguishable from default sorting in tobacco. Plant J 65:295–308CrossRefPubMedGoogle Scholar
  77. 77.
    Shi H, Zhu L, Zhou Y et al (2009) A cotton gene encoding a polygalacturonase-inhibitor-like protein is specifically expressed in petals. Acta Biochim Biophys Sin 41:316–324CrossRefPubMedGoogle Scholar
  78. 78.
    Huang L, Liu Y, Yu X et al (2011) A polygalacturonase inhibitory protein gene (BcMF19) expressed during pollen development in Chinese cabbage-pak-choi. Mol Biol Rep 38:545–552CrossRefPubMedGoogle Scholar
  79. 79.
    Kanai M, Nishimura M, Hayashi M (2010) A peroxisomal ABC transporter promotes seed germination by inducing pectin degradation under the control of ABI5. Plant J 62:936–947PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Sreedhara Ashok Prabhu
    • 1
  • Martin Wagenknecht
    • 2
  • Prasad Melvin
    • 1
  • Belur Shivappa Gnanesh Kumar
    • 3
  • Mariswamy Veena
    • 1
  • Sekhar Shailasree
    • 4
  • Bruno Maria Moerschbacher
    • 2
  • Kukkundoor Ramachandra Kini
    • 1
  1. 1.Department of Studies in BiotechnologyUniversity of MysoreMysoreIndia
  2. 2.Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms-Universität MünsterMünsterGermany
  3. 3.Protein Biochemistry and Glycobiology Laboratory, Department of BiochemistryUniversity of HyderabadHyderabadIndia
  4. 4.Institution of Excellence, Vijnana BhavanUniversity of MysoreMysoreIndia

Personalised recommendations