Skip to main content
Log in

Membrane fatty acid compositions and cold-induced responses in tetraploid and hexaploid wheats

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Plant cells often increase cold tolerance by reprogramming their genes expression which results in adjusted metabolic alternations, a process enhanced under cold acclimation. In present study, we assessed the changes of membrane fatty acid compositions along with physio-biochemical indices like H2O2 and malondialdehyde (MDA) contents and lipoxygenase (LOX) activity during cold stress (CS) phases in acclimated and non-acclimated durum (SRN and Gerdish) and bread (Norstar) wheat genotypes. During thermal treatments, MDA was an end product of lipid peroxidation via oxidative stress (H2O2 content) rather than LOX activity. LOX activity plays a double role in mechanism of cold tolerance in wheat, particularly at severe stress. With increase in severity of CS especially in non-acclimated plants, LOX activity decreased along with an increase in MDA and other responses helped increase or maintaine unsaturated fatty acids (FAs) whereas in acclimated plants (moderate CS), increasing of LOX activity along with a decrease in MDA indicates probably its role in secondary metabolites like jasmonic acid signaling pathway. Significant increase of total FAs and particularly unsaturated FAs showed distinct cell endeavor to protect against CS in Norstar and Gerdish compared to SRN genotype. Results showed that an increase in double bond index and LOX activity and low MDA under CS could be reasons for plant cold tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DBI:

Double bond index

CA:

Cold acclimation

CS:

Cold stress

FA:

Fatty acid

FAMEs:

Fatty acid methyl esters

FM:

Fresh mass

GC:

Gas chromatography

JA:

Jasmonic acid

LOX:

Lipoxygenase

MDA:

Malondialdehyde

NBT:

Nitro blue tetrazolium

ROS:

Reactive oxygen species

TCA:

Trichloroacetic acid

UFAs:

Unsaturated fatty acids

References

  1. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  2. Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  3. Heidarvand L, Maali-Amiri R (2010) What happens in plant molecular responses to cold stress. Acta Physiol Plant 32:419–431

    Article  CAS  Google Scholar 

  4. Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666:142–157

    Article  CAS  PubMed  Google Scholar 

  5. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  6. Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. Biochim Biophys Acta 1758:994–1003

    Article  CAS  PubMed  Google Scholar 

  7. Maali-Amiri R, Goldenkova-Pavlova IV, Pchelkin VP, Tsydendambaev VD, Vereshchagin AG, Deryabin AN, Trunova TI, Los DA, Nosov AM (2007) Lipid fatty acid composition of potato plants transformed with the Δ12-desaturase gene from Cyanobacterium. Russ J Plant Physiol 54:678–685

    Article  Google Scholar 

  8. Lang P, Zhang C, Ebel RC, Dane F, Dozier WA (2005) Identification of cold acclimated genes in leaves of Citrus unshiu by mRNA differential display. Gene 359:111–118

    Article  CAS  PubMed  Google Scholar 

  9. Mullineaux PM, Baker NR (2010) Oxidative stress: antagonistic signaling for acclimation or cell death. Plant Physiol 154:521–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Nazari MR, Habibpour Mehraban F, Maali Amiri R, Zeinali Khaneghah H (2012) Change in antioxidant responses against oxidative damage in black chickpea following cold acclimation. Russ J Plant Physiol 59:183–189

    Article  CAS  Google Scholar 

  11. Larkindale J, Vierling E (2008) Core genome responses involved in acclimation to high temperature. Plant Physiol 146:748–761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Chu J, Yao X, Zhang Z (2010) Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol Trace Elem Res 136:355–363

    Article  CAS  PubMed  Google Scholar 

  13. Saeidi M, Eliasi P, Abdoly M, Sasani S (2012) Freezing tolerance of wheat cultivars at the early growing season after winter. Afri J Biotechnol 11:4045–4052

    Google Scholar 

  14. Limin AE, Fowler DB (1985) Cold hardiness in Triticum and Aegilops species. Can J Plant Sci 65:71–77

    Article  Google Scholar 

  15. Heidarvand L, Maali-Amiri R, Naghavi MR, Farayedi Y, Sadeghzadeh B, Alizadeh Kh (2011) Physiological and morphological characteristics of chickpea accessions under low temperature stress. Russ J Plant Physiol 58:157–163

    Article  CAS  Google Scholar 

  16. Hurry VM, Huner NPA (1991) Low growth temperature effects a differential inhibition of photosynthesis in spring and winter wheat. Plant Physiol 96:491–497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Loreto F, Velikova V (2001) Isoprene production by leave protects the photosynthetic apparatus against ozone damage, aquenchesozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. 1. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–215

    Article  CAS  PubMed  Google Scholar 

  19. Axelroad B, Cheesebrough TM, Laasko S (1981) Lipoxigenase from soybeans. Meth Enzymol 71:441–451

    Article  Google Scholar 

  20. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can Biochem Biophys 37:911–917

    CAS  Google Scholar 

  21. Metcalfe LD, Schmitz AA, Pelka JR (1966) Rapid preparation of fatty acid esters from lipids for gas chromatography analysis. Anal Chem 193:514–515

    Article  Google Scholar 

  22. Orlova IV, Serebriiskaya TS, Popov V, Merkulova N, Nosov AM, Trunova TI, Tsydendambaev VD, Los DA (2003) Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants. Plant Cell Physiol 44:447–450

    Article  CAS  PubMed  Google Scholar 

  23. Somerville C, Browse J (1996) Dissecting desaturation: plants prove advantageous. Trends Cell Biol 6:148–153

    Article  CAS  PubMed  Google Scholar 

  24. Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Ann Rev Plant Biol 53:225–245

    Article  CAS  Google Scholar 

  25. Aprile A, Mastrangelo AM, De Leonardis AM, Galiba G, Roncaglia E, Ferrari F, De Bellis L, Turchi L, Giuliano G, Cattivelli L (2009) Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics 10:279. doi:10.1186/1471-2164-10-279

    Article  PubMed Central  PubMed  Google Scholar 

  26. Popov VN, Kipaikina NV, Astakhova NV, Trunova TI (2006) Specific features of oxidative stress in the chilled tobacco plants following transformation with the desC gene for acyl-lipid Δ9-desaturase from Synechococcus vulcanus. Russ J Plant Physiol 53:469–473

    Article  CAS  Google Scholar 

  27. Houtte HV, Vandesteene L, López-Galvis L, Lemmens L, Kissel E, Carpentier S, Feil R, Avonce N, Beeckman T, Lunn JE, Van Dijck P (2013) Over-expression of the trehalase gene AtTRE1 leads to increased drought stress tolerance in Arabidopsis and is involved in ABA-induced stomatal closure. Plant Physiol 161:1158–1171

    Article  PubMed Central  PubMed  Google Scholar 

  28. Hameed A, Goher M, Iqbal N (2012) Heat stress-induced cell death, changes in antioxidants, lipid peroxidation, and protease activity in wheat leaves. J Plant Growth Regul 31:283–291

    Article  CAS  Google Scholar 

  29. Kaur G, Singh HP, Batish DR, Kohli RK (2013) Lead (Pb)-induced biochemical and ultrastructural changes in wheat (Triticum aestivum) roots. Protoplasma 250:53–62

    Article  CAS  PubMed  Google Scholar 

  30. Xu J, Li Y, Sun J, Du L, Zhang Y, Yu Q, Liu X (2012) Comparative physiological and proteomic response to abrupt low temperature stress between two winter wheat cultivars differing in low temperature tolerance. Plant Biol 15:292–303

    Article  PubMed  Google Scholar 

  31. Heidarvand L, Maali-Amiri R (2013) Physio-biochemical and proteome analysis of chickpea in early phases of cold stress. J Plant Physiol 170:459–469

    Article  CAS  PubMed  Google Scholar 

  32. Berger S, Weichert H, Porzel A, Wasternack C, Kühn H, Feussner I (2001) Enzymatic and non-enzymatic lipid peroxidation in leaf development. Biochim Biophys Acta 1533:266–276

    Article  CAS  PubMed  Google Scholar 

  33. Kazemi Shahandashti SS, Maali-Amiri R, Zeinali H, Ramezanpour SS (2013) Change in membrane fatty acid compositions and cold-induced responses in chickpea. Mol Biol Rep 40:893–903

    Article  CAS  PubMed  Google Scholar 

  34. Mondal K, Sharma NS, Malhotra SP, Dhawan K, Singh R (2004) Antioxidant systems in ripening tomato fruits. Biol Plant 48:49–53

    Article  CAS  Google Scholar 

  35. Goulas E, Schubert M, Kieselbach T, Kleczkowski LA, Gardeström P, Schröder W, Hurry V (2006) The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature. Plant J 47:720–734

    Article  CAS  PubMed  Google Scholar 

  36. Wang X, Yang P, Zhang X, Xu Y, Kuang T, Shen S, He Y (2009) Proteomic analysis of the cold stress response in the moss, Physcomitrella patens. Proteomics 9:4529–4538

    Article  CAS  PubMed  Google Scholar 

  37. Pushpalatha HG, Sudisha J, Geetha NP, Amruthesh KN, Shekar Shetty H (2011) Thiamine seed treatment enhances LOX expression, promotes growth and induces downy mildew disease resistance in pearl millet. Biol Plant 55:522–527

    Article  CAS  Google Scholar 

  38. Porta H, Rocha-Sosa M (2002) Plant lipoxygenases: physiological and molecular features. Plant Physiol 130:15–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lee SH, Ahn SJ, Im YJ, Cho K, Chung GC, Cho BH, Han O (2005) Differential impact of low temperature on fatty acid unsaturation and lipoxygenase activity in figleaf gourd and cucumber roots. Biochem Biophys Res Commun 330:1194–1198

    Article  CAS  PubMed  Google Scholar 

  40. Blée E (2002) Impact of phyto-oxylipins in plant defense. Trends Plant Sci 7:315–322

    Article  PubMed  Google Scholar 

  41. Cho K, Han Y, Woo JC, Baudisch B, Klösgen RB, Oh S, Han J, Han O (2011) Cellular localization of dual positional specific maize lipoxygenase-1 in transgenic rice and calcium-mediated membrane association. Plant Sci 181:242–248

    Article  CAS  PubMed  Google Scholar 

  42. Kim ES, Choi E, Kim Y, Cho K, Lee A, Shim J, Rakwal R, Agrawal GK, Han O (2003) Dual positional specificity and expression of non-traditional lipoxygenase induced by wounding and methyl jasmonate in maize seedlings. Plant Mol Biol 52:1203–1213

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Maali-Amiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejadsadeghi, L., Maali-Amiri, R., Zeinali, H. et al. Membrane fatty acid compositions and cold-induced responses in tetraploid and hexaploid wheats. Mol Biol Rep 42, 363–372 (2015). https://doi.org/10.1007/s11033-014-3776-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3776-3

Keywords

Navigation