Skip to main content
Log in

Significant interethnic differencies in functional variants of PON1 and P2RY12 genes in Roma and Hungarian population samples

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

An Erratum to this article was published on 04 November 2014

Abstract

Antiplatelet therapy with clopidogrel is one of the most common therapies given to patients worldwide. However, the clinical efficacy and toxicity of clopidogrel is not constant in every patient due to interindividual variations. There are several factors that contribute to these interindividual differencies such as SNPs in genes of specific receptors and enzymes. PON1 (paraoxonase 1) plays an important role in the bioactivation of clopidogrel. Single nucleotide polymorphisms of this gene decrease the activity of paraoxonase enzyme and lead to an unefficient clopidogrel effect. P2RY12 (purinergic receptor P2Y, G-protein coupled, 12) gene is coding a receptor, which is situated on the surface of the platelets and plays a role in ADP-induced platelet aggregation. In this study we investigated 2 functional SNPs of PON1 gene (rs662 and rs854560) and 3 variants of the P2RY12 gene (rs2046934, rs6798347, rs6801273) in samples pooled from average Hungarian Roma and Hungarian population samples with PCR–RFLP method. For the PON1 variants we detected that the R allele frequency was significantly lower in the Roma group compared to the Hungarian population. (0.249 vs 0.318 p < 0.001). By contrast, the frequency of the M allele was significantly higher in Roma than in Hungarians (0.332 vs 0.290 p < 0.05). For the 3 P2RY12 variants we could find significant differencies only in rs2046934: the frequency of the CC genotype is 7 times higher in Hungarians than in Romas (1.4 vs 0.2 %, p < 0.05). The data presented here represent a unique genetic profile in Roma people that has not been reported for other populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mackness B, Mackness MI, Arrol S, Turkie W, Durrington PN (1998) Effect of the human serum paraoxonase 55 and 192 genetic polymorphisms on the protection by high density lipoprotein against low density lipoprotein oxidative modification. FEBS Lett 423(1):57–60

    Article  CAS  PubMed  Google Scholar 

  2. Bouman HJ, Schomig E, van Werkum JW, Velder J, Hackeng CM, Hirschhauser C, Waldmann C, Schmalz HG, ten Berg JM, Taubert D (2011) Paraoxonase-1 is a major determinant of clopidogrel efficacy. Nat Med 17(1):110–116. doi:10.1038/nm.2281

    Article  CAS  PubMed  Google Scholar 

  3. Humbert R, Adler DA, Disteche CM, Hassett C, Omiecinski CJ, Furlong CE (1993) The molecular basis of the human serum paraoxonase activity polymorphism. Nat Genet 3(1):73–76. doi:10.1038/ng0193-73

    Article  CAS  PubMed  Google Scholar 

  4. Garin MC, James RW, Dussoix P, Blanche H, Passa P, Froguel P, Ruiz J (1997) Paraoxonase polymorphism Met-Leu54 is associated with modified serum concentrations of the enzyme. A possible link between the paraoxonase gene and increased risk of cardiovascular disease in diabetes. J Clin Investig 99(1):62–66. doi:10.1172/JCI119134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409(6817):202–207. doi:10.1038/35051599

    Article  CAS  PubMed  Google Scholar 

  6. Gachet C (2005) The platelet P2 receptors as molecular targets for old and new antiplatelet drugs. Pharmacol Ther 108(2):180–192. doi:10.1016/j.pharmthera.2005.03.009

    Article  CAS  PubMed  Google Scholar 

  7. Savi P, Pereillo JM, Uzabiaga MF, Combalbert J, Picard C, Maffrand JP, Pascal M, Herbert JM (2000) Identification and biological activity of the active metabolite of clopidogrel. Thromb Haemost 84(5):891–896

    CAS  PubMed  Google Scholar 

  8. Fontana P, Dupont A, Gandrille S, Bachelot-Loza C, Reny JL, Aiach M, Gaussem P (2003) Adenosine diphosphate-induced platelet aggregation is associated with P2Y12 gene sequence variations in healthy subjects. Circulation 108(8):989–995. doi:10.1161/01.CIR.0000085073.69189.88

    Article  CAS  PubMed  Google Scholar 

  9. Gresham D, Morar B, Underhill PA, Passarino G, Lin AA, Wise C, Angelicheva D, Calafell F, Oefner PJ, Shen P, Tournev I, de Pablo R, Kucinskas V, Perez-Lezaun A, Marushiakova E, Popov V, Kalaydjieva L (2001) Origins and divergence of the Roma (gypsies). Am J Hum Genet 69(6):1314–1331. doi:10.1086/324681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kalaydjieva L, Gresham D, Gooding R, Heather L, Baas F, de Jonge R, Blechschmidt K, Angelicheva D, Chandler D, Worsley P, Rosenthal A, King RH, Thomas PK (2000) N-myc downstream-regulated gene 1 is mutated in hereditary motor and sensory neuropathy-Lom. Am J Hum Genet 67(1):47–58. doi:10.1086/302978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kalaydjieva L, Hallmayer J, Chandler D, Savov A, Nikolova A, Angelicheva D, King RH, Ishpekova B, Honeyman K, Calafell F, Shmarov A, Petrova J, Turnev I, Hristova A, Moskov M, Stancheva S, Petkova I, Bittles AH, Georgieva V, Middleton L, Thomas PK (1996) Gene mapping in Gypsies identifies a novel demyelinating neuropathy on chromosome 8q24. Nat Genet 14(2):214–217. doi:10.1038/ng1096-214

    Article  CAS  PubMed  Google Scholar 

  12. Kalaydjieva L, Perez-Lezaun A, Angelicheva D, Onengut S, Dye D, Bosshard NU, Jordanova A, Savov A, Yanakiev P, Kremensky I, Radeva B, Hallmayer J, Markov A, Nedkova V, Tournev I, Aneva L, Gitzelmann R (1999) A founder mutation in the GK1 gene is responsible for galactokinase deficiency in Roma (Gypsies). Am J Hum Genet 65(5):1299–1307. doi:10.1086/302611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kaneva R, Milanova V, Onchev G, Stoyanova V, Chakarova CH, Nikolova A, Hallmayer J, Belemezova M, Milenska T, Kirov G, Kremensky I, Kalaydjieva L, Jablensky A (1998) A linkage study of affective disorders in two Bulgarian Gypsy families: results for candidate regions on chromosomes 18 and 21. Psychiatr Genet 8(4):245–249

    Article  CAS  PubMed  Google Scholar 

  14. Gupta N, Binukumar BK, Singh S, Sunkaria A, Kandimalla R, Bhansali A, Gill KD (2011) Serum paraoxonase-1 (PON1) activities (PONase/AREase) and polymorphisms in patients with type 2 diabetes mellitus in a North-West Indian population. Gene 487(1):88–95. doi:10.1016/j.gene.2011.07.011

    Article  CAS  PubMed  Google Scholar 

  15. Antikainen M, Murtomaki S, Syvanne M, Pahlman R, Tahvanainen E, Jauhiainen M, Frick MH, Ehnholm C (1996) The Gln-Arg191 polymorphism of the human paraoxonase gene (HUMPONA) is not associated with the risk of coronary artery disease in Finns. J Clin Investig 98(4):883–885. doi:10.1172/JCI118869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Mackness B, Davies GK, Turkie W, Lee E, Roberts DH, Hill E, Roberts C, Durrington PN, Mackness MI (2001) Paraoxonase status in coronary heart disease: are activity and concentration more important than genotype? Arterioscler Thromb Vasc Biol 21(9):1451–1457

    Article  CAS  PubMed  Google Scholar 

  17. Gardemann A, Philipp M, Hess K, Katz N, Tillmanns H, Haberbosch W (2000) The paraoxonase Leu-Met54 and Gln-Arg191 gene polymorphisms are not associated with the risk of coronary heart disease. Atherosclerosis 152(2):421–431

    Article  CAS  PubMed  Google Scholar 

  18. Veiga L, Silva-Nunes J, Melao A, Oliveira A, Duarte L, Brito M (2011) Q192R polymorphism of the paraoxonase-1 gene as a risk factor for obesity in Portuguese women. Eur J Endocrinol/Eur Fed Endocr Soc 164(2):213–218. doi:10.1530/EJE-10-0825

    Article  CAS  Google Scholar 

  19. Aynacioglu AS, Cascorbi I, Mrozikiewicz PM, Nacak M, Tapanyigit EE, Roots I (1999) Paraoxonase 1 mutations in a Turkish population. Toxicol Appl Pharmacol 157(3):174–177. doi:10.1006/taap.1999.8690

    Article  CAS  PubMed  Google Scholar 

  20. Hasselwander O, Savage DA, McMaster D, Loughrey CM, McNamee PT, Middleton D, Nicholls DP, Maxwell AP, Young IS (1999) Paraoxonase polymorphisms are not associated with cardiovascular risk in renal transplant recipients. Kidney Int 56(1):289–298. doi:10.1046/j.1523-1755.1999.00521.x

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Zheng F, Du H, Krepinsky JC, Segbo JA, Zhou X (2006) Detecting the polymorphisms of paraoxonase (PON) cluster in Chinese Han population based on a rapid method. Clinica Chimica Acta (Int J Clin Chem) 365(1–2):98–103. doi:10.1016/j.cca.2005.07.034

    Article  CAS  Google Scholar 

  22. Ueno T, Shimazaki E, Matsumoto T, Watanabe H, Tsunemi A, Takahashi Y, Mori M, Hamano R, Fujioka T, Soma M, Matsumoto K, Kanmatsuse K (2003) Paraoxonase1 polymorphism Leu-Met55 is associated with cerebral infarction in Japanese population. Med Sci Monit 9(6):CR208-212

    Google Scholar 

  23. Poh R, Muniandy S (2007) Ethnic variations in paraoxonase1 polymorphism in the Malaysian population. Southeast Asian J Trop Med Public Health 38(2):392–397

    CAS  PubMed  Google Scholar 

  24. Malin R, Lehtinen S, Luoma P, Nayha S, Hassi J, Koivula T, Lehtimaki T (2001) Serum lipid levels and M/L55 allele distribution of HDL paraoxonase gene in Saami and Finnish men. Int J Circumpolar Health 60(1):16–24

    CAS  PubMed  Google Scholar 

  25. Bouman HJ, van Werkum JW, Rudez G, Leebeek FW, Kruit A, Hackeng CM, Ten Berg JM, de Maat MP, Ruven HJ (2010) The influence of variation in the P2Y12 receptor gene on in vitro platelet inhibition with the direct P2Y12 antagonist cangrelor. Thromb Haemost 103(2):379–386. doi:10.1160/TH09-06-0367

    Article  CAS  PubMed  Google Scholar 

  26. Cavallari U, Trabetti E, Malerba G, Biscuola M, Girelli D, Olivieri O, Martinelli N, Angiolillo DJ, Corrocher R, Pignatti PF (2007) Gene sequence variations of the platelet P2Y12 receptor are associated with coronary artery disease. BMC Med Genet 8:59. doi:10.1186/1471-2350-8-59

    Article  PubMed Central  PubMed  Google Scholar 

  27. Malek LA, Kisiel B, Spiewak M, Grabowski M, Filipiak KJ, Kostrzewa G, Huczek Z, Ploski R, Opolski G (2008) Coexisting polymorphisms of P2Y12 and CYP2C19 genes as a risk factor for persistent platelet activation with clopidogrel. Circ J 72(7):1165–1169

    Article  CAS  PubMed  Google Scholar 

  28. Chen Q, Reis SE, Kammerer CM, McNamara DM, Holubkov R, Sharaf BL, Sopko G, Pauly DF, Merz CN, Kamboh MI, Group WS (2003) Association between the severity of angiographic coronary artery disease and paraoxonase gene polymorphisms in the National Heart, Lung, and Blood Institute-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study. Am J Hum Genet 72(1):13–22. doi:10.1086/345312

    Article  Google Scholar 

  29. Ito T, Yasue H, Yoshimura M, Nakamura S, Nakayama M, Shimasaki Y, Harada E, Mizuno Y, Kawano H, Ogawa H (2002) Paraoxonase gene Gln192Arg (Q192R) polymorphism is associated with coronary artery spasm. Hum Genet 110(1):89–94. doi:10.1007/s00439-001-0654-6

    Article  CAS  PubMed  Google Scholar 

  30. Voetsch B, Benke KS, Panhuysen CI, Damasceno BP, Loscalzo J (2004) The combined effect of paraoxonase promoter and coding region polymorphisms on the risk of arterial ischemic stroke among young adults. Arch Neurol 61(3):351–356. doi:10.1001/archneur.61.3.351

    Article  PubMed  Google Scholar 

  31. Ranade K, Kirchgessner TG, Iakoubova OA, Devlin JJ, DelMonte T, Vishnupad P, Hui L, Tsuchihashi Z, Sacks FM, Sabatine MS, Braunwald E, White TJ, Shaw PM, Dracopoli NC (2005) Evaluation of the paraoxonases as candidate genes for stroke: Gln192Arg polymorphism in the paraoxonase 1 gene is associated with increased risk of stroke. Stroke; a J Cereb Circ 36(11):2346–2350. doi:10.1161/01.STR.0000185703.88944.7d

    Article  CAS  Google Scholar 

  32. Fontana P, Gaussem P, Aiach M, Fiessinger JN, Emmerich J, Reny JL (2003) P2Y12 H2 haplotype is associated with peripheral arterial disease: a case-control study. Circulation 108(24):2971–2973. doi:10.1161/01.CIR.0000106904.80795.35

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the TÁMOP-4.2.1.B-10/2/KONV-2010-0002 scholarship of the Social Renewal Operational Programme, which is part of the New Hungary Development Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bela Melegh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janicsek, I., Sipeky, C., Bene, J. et al. Significant interethnic differencies in functional variants of PON1 and P2RY12 genes in Roma and Hungarian population samples. Mol Biol Rep 42, 227–232 (2015). https://doi.org/10.1007/s11033-014-3762-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3762-9

Keywords

Navigation