Skip to main content
Log in

Genetic analysis of litchi (Litchi chinensis Sonn.) in southern China by improved random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Litchi (Litchi chinensis Sonn., L. chinensis), a type of tree growing in most areas of southern China, produces an edible fruit that is also a source of traditional medicine. Genetic identification of litchi species or cultivars using molecular markers is very important. In this study, a total of six litchi samples from Fujian, Hainan, Guangdong, Guangxi and Sichuan province, as well as one wild Dimocarpus confinis (D. confinis) sample from Guangxi province were collected for genetic analysis. The cluster dendrograms were constructed for genetic analysis on the basis of DNA amplification results by RAPD and ISSR. The improved RAPD amplified DNA with consistent and clear banding patterns. A total of 176 bands were found, indicating a 72.7 % polymorphism in L. chinensis DNA samples. Significant genetic distances were found among the different species or cultivars, with an index of similarity coefficient ranging from 0.59 to 0.87. Similar to RAPD results, ISSR analysis of the L. chinensis DNA samples showed a range of 0.70–0.93 similarity coefficients. The genetic distance between Hainan sample and Sichuan samples was the farthest, which is consistent with their geographic distance. Furthermore, the index of similarity coefficient between D. confinis and L. chinensis was 0.35–0.41 by RAPD and 0.38–0.48 by ISSR, indicating that these two species have significant genetic difference. This study reveals the high level of genetic differences between different litchi species or cultivars, and confirms the significance of the improved RAPD method in genetic characterization of organisms. Taken together, the improved RAPD combined with ISSR analysis can be used frequently for the genetic diversity, germplasm resources preservation, molecular-assisted breeding, and genetic characterization of various organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang X, Yuan S, Wang J, Lin P, Liu G, Lu Y, Zhang J, Wang W, Wei Y (2006) Anticancer activity of litchi fruit pericarp extract against human breast cancer in vitro and in vivo. Toxicol Appl Pharmacol 215:168–178

    Article  CAS  PubMed  Google Scholar 

  2. Hsu CP, Lin CC, Huang CC, Lin YH, Chou JC, Tsia YT, Su JR, Chung YC (2012) Induction of apoptosis and cell cycle arrest in human colorectal carcinoma by Litchi seed extract. J Biomed Biotechnol 2012:341479

    Article  PubMed Central  PubMed  Google Scholar 

  3. Huang F, Zhang R, Yi Y, Tang X, Zhang M, Su D, Deng Y, Wei Z (2014) Comparison of physicochemical properties and immunomodulatory activity of polysaccharides from fresh and dried litchi pulp. Molecules 19:3909–3925

    Article  PubMed  Google Scholar 

  4. Xu L, Xue J, Wu P, Wang D, Lin L, Jiang Y, Duan X, Wei X (2013) Antifungal activity of hypothemycin against Peronophythora litchii in vitro and in vivo. J Agric Food Chem 61:10091–10095

    Article  CAS  PubMed  Google Scholar 

  5. Ichinose T, Musyoka TM, Watanabe K, Kobayashi N (2013) Evaluation of antiviral activity of Oligonol, an extract of Litchi chinensis, against betanodavirus. Drug Discov Ther 7:254–260

    Article  CAS  PubMed  Google Scholar 

  6. Yang B, Wang J, Zhao M, Liu Y, Wang W, Jiang Y (2006) Identification of polysaccharides from pericarp tissues of litchi (Litchi chinensis Sonn.) fruit in relation to their antioxidant activities. Carbohydr Res 341:634–638

    Article  CAS  PubMed  Google Scholar 

  7. Duan X, Wu G, Jiang Y (2007) Evaluation of the antioxidant properties of litchi fruit phenolics in relation to pericarp browning prevention. Molecules 12:759–771

    Article  CAS  PubMed  Google Scholar 

  8. Kong F, Zhang M, Liao S, Yu S, Chi J, Wei Z (2010) Antioxidant activity of polysaccharide-enriched fractions extracted from pulp tissue of Litchi Chinensis Sonn. Molecules 15:2152–2165

    Article  CAS  PubMed  Google Scholar 

  9. Yang DJ, Chang YZ, Chen YC, Liu SC, Hsu CH, Lin JT (2012) Antioxidant effect and active components of litchi (Litchi chinensis Sonn.) flower. Food Chem Toxicol 50:3056–3061

    Article  CAS  PubMed  Google Scholar 

  10. Zhang R, Zeng Q, Deng Y, Zhang M, Wei Z, Zhang Y, Tang X (2013) Phenolic profiles and antioxidant activity of litchi pulp of different cultivars cultivated in Southern China. Food Chem 136:1169–1176

    Article  CAS  PubMed  Google Scholar 

  11. Su D, Zhang R, Hou F, Zhang M, Guo J, Huang F, Deng Y, Wei Z (2014) Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents. BMC Complement Altern Med 14:9

    Article  PubMed Central  PubMed  Google Scholar 

  12. Sung YY, Yang WK, Kim HK (2012) Antiplatelet, anticoagulant and fibrinolytic effects of Litchi chinensis Sonn. extract. Mol Med Rep 5:721–724

    CAS  PubMed  Google Scholar 

  13. Guo J, Li L, Pan J, Qiu G, Li A, Huang G, Xu L (2004) Pharmacological mechanism of Semen Litchi on antagonizing insulin resistance in rats with type 2 diabetes. Zhong Yao Cai 27:435–438

    PubMed  Google Scholar 

  14. Noh JS, Kim HY, Park CH, Fujii H, Yokozawa T (2010) Hypolipidaemic and antioxidative effects of oligonol, a low-molecular-weight polyphenol derived from lychee fruit, on renal damage in type 2 diabetic mice. Br J Nutr 104:1120–1128

    Article  CAS  PubMed  Google Scholar 

  15. Noh JS, Park CH, Yokozawa T (2011) Treatment with oligonol, a low-molecular polyphenol derived from lychee fruit, attenuates diabetes-induced hepatic damage through regulation of oxidative stress and lipid metabolism. Br J Nutr 106:1013–1022

    Article  CAS  PubMed  Google Scholar 

  16. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hess J, Kadereit JW, Vargas P (2000) The colonization history of Olea europaea L. in Macaronesia based on internal transcribed spacer 1 (ITS-1) sequences, randomly amplified polymorphic DNAs (RAPD), and intersimple sequence repeats (ISSR). Mol Ecol 9:857–868

    Article  CAS  PubMed  Google Scholar 

  18. Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631

    Article  CAS  PubMed  Google Scholar 

  19. Varela ES, Lima JP, Galdino AS, Pinto Lda S, Bezerra WM, Nunes EP, Alves MA, Grangeiro TB (2004) Relationships in subtribe Diocleinae (Leguminosae; Papilionoideae) inferred from internal transcribed spacer sequences from nuclear ribosomal DNA. Phytochemistry 65:59–69

    Article  CAS  PubMed  Google Scholar 

  20. Noormohammadi Z, Hasheminejad-Ahangarani Farahani Y, Sheidai M, Ghasemzadeh-Baraki Alishah S, Alishah O (2013) Genetic diversity analysis in Opal cotton hybrids based on SSR, ISSR, and RAPD markers. Genet Mol Res 12:256–269

    Article  CAS  PubMed  Google Scholar 

  21. Pachuau L, Atom AD, Thangjam R (2014) Genome classification of Musa cultivars from Northeast India as revealed by ITS and IRAP markers. Appl Biochem Biotechnol 172:3939–3948

    Article  CAS  PubMed  Google Scholar 

  22. Khadivi-Khub A, Soorni A (2014) Comprehensive genetic discrimination of Leonurus cardiaca populations by AFLP, ISSR, RAPD and IRAP molecular markers. Mol Biol Rep 41:4007–4016

    Article  CAS  PubMed  Google Scholar 

  23. Fu J, Li L, Xu X, Wang Z, Tang G, Yin C, Lu G (2000) An improved method for increasing the efficiency of the technique of random amplified polymorphic DNA (RAPD). Hereditas 22:251–252

    CAS  Google Scholar 

  24. Fu J, Yang L, Khan MA, Mei Z (2013) Genetic characterization and authentication of Lonicera japonica Thunb. by using improved RAPD analysis. Mol Biol Rep 40:5993–5999

    Article  CAS  PubMed  Google Scholar 

  25. Ding XD, Lu LX, Chen XJ (2001) Segregation patterns of RAPD markers in an F1 population of Litchi chinensis Sonn. Acta Hort 558:167–172

    CAS  Google Scholar 

  26. Liu LS, Pan DM, Zhong FL, Wang JB (2010) POD isoenzyme and RAPD analysis on litchi in Fuqing. The Third international conference symposium on Longan, Lychee and other fruit trees in Sapindaceae family. Acta Hort 863:189–194

    CAS  Google Scholar 

  27. Zhou J, Fu JX, Wu ZX, Huang SS, Zhao YH, Zhang B, Hu YL, Hu GB, Liu CM (2012) Construction of two high density genetic linkage maps in litchi. Acta Hort 929:207–213

    Google Scholar 

  28. Mei ZQ, Fu SY, Yu HQ, Yang LQ, Duan CG, Liu XY, Gong S, Fu JJ (2014) Genetic characterization and authentication of Dimocarpus longan Lour. using an improved RAPD technique. Genet Mol Res 13:1447–1455

    Article  CAS  PubMed  Google Scholar 

  29. Mei Z, Yang L, Khan MA, Yang M, Wei C, Yang W, Peng X, Tania M, Zhan Hg, Li X, Fu J (2014) Genotyping of ganoderma species by improved random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) analysis. Biochem Syst Ecol 56:40–48

    Article  CAS  Google Scholar 

  30. Yang L, Khan MA, Mei Z, Yang M, Zhang T, Wei C, Yang W, Zhu L, Long Y, Fu J (2014) Development of RAPD-SCAR markers for Lonicera japonica Thunb. (Caprifolicaceae) variety authentication by improved RAPD and DNA cloning. Rev Biol Trop 62:(in press)

  31. Yang L, Fu S, Khan MA, Zeng W, Fu J (2013) Molecular cloning and development of RAPD-SCAR markers for Dimocarpus longan variety authentication. SpringerPlus 2:501

    Article  PubMed Central  PubMed  Google Scholar 

  32. Sharma P, Joshi N, Sharma A (2010) Isolation of genomic DNA from medicinal plants without liquid nitrogen. Indian J Exp Biol 48:610–614

    CAS  PubMed  Google Scholar 

  33. Fu JJ (2012) Short protocols in medical molecular biology. China Medical Science Press, Beijing

    Google Scholar 

  34. Rohlf FJ (2002) NTSYS-pc: numerical taxonomy system ver.2.1. Exeter Pub Ltd, Setauket, New York. http://www.exetersoftware.com/cat/ntsyspc/ntsyspc.html. Accessed 6 June 2014

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (81172049), Science and Technology Innovation Team of Colleges and Universities of Sichuan Province (13TD0032), Applied Basic Research Program of Science and Technology Department of Sichuan Province (14JC0797) and Luzhou City Special Foundation (2013LZLY-J10). The authors thank all individuals who provided plant leaves or DNAs.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjiang Fu.

Additional information

Yan Long and Jingliang Cheng are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Y., Cheng, J., Mei, Z. et al. Genetic analysis of litchi (Litchi chinensis Sonn.) in southern China by improved random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR). Mol Biol Rep 42, 159–166 (2015). https://doi.org/10.1007/s11033-014-3755-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3755-8

Keywords

Navigation