Skip to main content

Advertisement

Log in

Implication of matrix metalloproteinases in regulating neuronal disorder

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Neurological disorder is an abnormal condition of the nervous system that occurs due to the structural and biochemical abnormalities of nerves in brain and spinal cord. The nervous system, once exposed, has a limited capacity of self-repair. Neurodegeneration refers to the phenomenon of the structural and functional loss of neurons and the rate of which is accelerated by aging. Recent studies identified the blood brain barrier as hotspot of damage due to neurodegeneration. Depending on the location and severity of damage, the neurons succumb to death through the apoptotic, autophagic and necrotic pathways. The neurological system reorients the structure of neuronal circuits in order to maintain the neuronal plasticity during neurological disorders like Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, multiple sclerosis etc. Matrix metalloproteinases (MMPs), a family of Zn2+ dependent endopeptidases play an important role in those neurodegenerative disorders. Recent studies implicated the role of MMPs in acute neuroinflammatory damage as well as in chronic neurodegeneration. The critical function of individual MMPs in tissue repair is also very important. MMPs serve important functions in the central nervous system (CNS) during growth and development. Besides, MMPs are important in neuronal damage in acute and chronic conditions as well as repair processes. Studies reveal that MMPs and the tissue inhibitors of metalloproteinases (TIMPs) play pivotal roles in pathogenesis and recovery of neurons. The expression and activities of MMPs are regulated by signaling molecules, TIMPs, cell surface receptors and transcription factors. In this review, we attempt to elucidate the role of MMPs in neurodegeneration and their functional mechanism in repairing the CNS. We also provide information for the therapeutics in neuronal disorder in the perspective of MMP regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Golde TE (2009) The therapeutic importance of understanding mechanisms of neuronal cell death in neurodegenerative disease. Mol Neurodegener 4:8

    PubMed Central  PubMed  Google Scholar 

  2. Roy S, Zhang B, Lee VM, Trojanowski JQ (2005) Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol 109:5–13

    PubMed  Google Scholar 

  3. Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10(Suppl):S18–S25

    PubMed  Google Scholar 

  4. Beal MF (2005) Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 58:495–505

    CAS  PubMed  Google Scholar 

  5. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Esiri MM (2007) The interplay between inflammation and neurodegeneration in CNS disease. J Neuroimmunol 184:4–16

    CAS  PubMed  Google Scholar 

  7. Jellinger KA (2001) Cell death mechanisms in neurodegeneration. J Cell Mol Med 5:1–17

    CAS  PubMed  Google Scholar 

  8. Wolozin B, Behl C (2000) Mechanisms of neurodegenerative disorders part 2: control of cell death. Arch Neurol 57:801–804

    CAS  PubMed  Google Scholar 

  9. Braak H, Braak E (1994) Morphological criteria for the recognition of Alzheimer’s disease and the distribution pattern of cortical changes related to this disorder. Neurobiol Aging 15:355–356 (Discussion 379–380)

    CAS  PubMed  Google Scholar 

  10. Palmer AM (2011) Neuroprotective therapeutics for Alzheimersdisease: progress and prospects. Trends Pharmacol Sci 32:141–147

    CAS  PubMed  Google Scholar 

  11. Yamada K, Nabeshima T (2000) Animal models of Alzheimer’s disease and evaluation of anti-dementia drugs. Pharmacol Ther 88:93–113

    CAS  PubMed  Google Scholar 

  12. Yankner BA (1989) Amyloid and Alzheimer’s disease—cause or effect? Neurobiol Aging 10:470–471 (Discussion 477–478)

  13. Yankner BA, Duffy LK, Kirschner DA (1990) Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 250:279–282

    CAS  PubMed  Google Scholar 

  14. McGeer PL, Itagaki S, Tago H, McGeer EG (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79:195–200

    CAS  PubMed  Google Scholar 

  15. Takuma K, Yan SS, Stern DM, Yamada K (2005) Mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis in Alzheimer’s disease. J Pharmacol Sci 97:312–316

    CAS  PubMed  Google Scholar 

  16. Takuma K, Fang F, Zhang W, Yan S, Fukuzaki E, Du H, Sosunov A, McKhann G, Funatsu Y, Nakamichi N, Nagai T, Mizoguchi H, Ibi D, Hori O, Ogawa S, Stern DM, Yamada K, Yan SS (2009) RAGE-mediated signaling contributes to intraneuronal transport of amyloid-β and neuronal dysfunction. Proc Natl Acad Sci USA 106:20021–20026

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Holdorff B (2002) Friedrich Heinrich Lewy (1885–1950) and his work. J Hist Neurosci 11:19–28

    PubMed  Google Scholar 

  18. Schiller F (2000) Fritz Lewy and his bodies. J Hist Neurosci 9:148–151

    CAS  PubMed  Google Scholar 

  19. Tanner CM (2003) Is the cause of Parkinson’s disease environmental or hereditary? Evidence from twin studies. Adv Neurol 91:133–142

    PubMed  Google Scholar 

  20. Block ML, Hong J-S (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    CAS  PubMed  Google Scholar 

  21. Tatton NA (2000) Increased caspase-3 and BAX immunoreactivity accompanying nuclear GAPDH translocation and neuronal apoptosis in Parkinson´s disease. Exp Neurol 166:29–43

    CAS  PubMed  Google Scholar 

  22. Tatton WG, Olanow CW (1999) Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochem Biophys Acta 1410:195–214

    CAS  PubMed  Google Scholar 

  23. Jha N, Jurma OP, Lalli G, Liu Y, Pettus EH, Greenamyre JT, Liu RM, Forman HJ, Andersen JK (2000) Glutathione depletion in PC12 results in selective inhibition of mitochondrial complex I activity: implications for Parkinson’s disease. J Biol Chem 275:26096–26101

    CAS  PubMed  Google Scholar 

  24. Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58:39–46

    CAS  PubMed  Google Scholar 

  25. Romero FJ, Bosch-Morell F, Romero MJ, Jareno EJ, Romero B, Marin N, Roma J (1998) Lipid peroxidation products and antioxidants in human disease. Environ Health Perspect 106:1229–1234

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Oliver CN, Starke-Reed PE, Stadtman ER, Liu GJ, Carney JM, Floyd RA (1990) Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci USA 87:5144–5147

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Murakami K, Kondo T, Chan PH (1997) Reperfusion following focal cerebral ischemia alters distribution of neuronal cells with DNA fragmentation in mice. Brain Res 751:160–164

    CAS  PubMed  Google Scholar 

  28. Mattson MP, Pedersen WA (1998) Effects of amyloid precursor protein derivatives and oxidative stress on basal forebrain cholinergic systems in Alzheimer disease. Int J Dev Neurosci 16:737–753

    CAS  PubMed  Google Scholar 

  29. Andrabi SA, Sayeed I, Siemen D, Wolf G, Horn TF (2004) Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin. FASEB J 18:869–871

    CAS  PubMed  Google Scholar 

  30. Yuan JY, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809

    CAS  PubMed  Google Scholar 

  31. Behl C (2000) Apoptosis and Alzheimer’s disease. J Neural Transm 107:1325–1344

    CAS  PubMed  Google Scholar 

  32. Wolozin B, Behl C (2000) Mechanisms of neurodegenerative disorders. Part I. Protein aggregates. Arch Neurol 57:793–796

    CAS  PubMed  Google Scholar 

  33. Reed JC (2000) Mechanisms of apoptosis. Am J Pathol 157:1415–1430

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Anderson A, Stoltzner S, Lai F, Su J, Nixon RA (2000) Morphological and biochemical assessment of DNA damage and apoptosis in down syndrome and Alzheimer disease, and effects of postmortem tissue archival on TUNEL. Neurobiol Aging 21:511–524

    CAS  PubMed  Google Scholar 

  35. Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel H, Srinivasan A, Ruberg M, Evan GI, Agid Y, Hirsch EC (2000) Caspase-3. A vulnerability factor and final effector in apoptotitc death of dopaminergic neurons in Parkinson’s disease. Proc Nat Acad Sci USA 97:2875–2880

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Kitamura Y, Shimohama S, Kamoshima W, Ota T, Matsuoka Y, Nomura Y, Smith MA, Perry G, Whitehouse PJ, Taniguchi T (1998) Alteration of proteins regulating apoptosis, Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-1 and CPP32, in Alzheimer’s disease. Brain Res 780:260–269

    CAS  PubMed  Google Scholar 

  37. Stadelmann C, Brück W, Bancher C, Jellinger K, Lassmann H (1998) Alzheimer disease: DNA fragmentation indicates increased neuronal vulnerability but not apoptosis. J Neuropathol Exp Neurol 57:456–464

    CAS  PubMed  Google Scholar 

  38. Levin S, Bucci TJ, Cohen SM, Fix AS, Hardisty JF, LeGrand EK, Maronpot RR, Trump BF (1999) The nomenclature of cell death: recommendations of an ad hoc committee of the Society of Toxicologic Pathologists. Toxic Pathol 27:484–490

    CAS  Google Scholar 

  39. Clarke PGH (1999) Apoptosis versus necrosis. In: Koliatsosue M, Ratan RR (eds) Cell death and disease of the nervous system. Humana Press, Totowa, pp 3–28

    Google Scholar 

  40. Guo Q, Fu W, Sopher BL, Miller MW, Ware CB, Martin GM, Mattson MP (1999) Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat Med 5:101–106

    CAS  PubMed  Google Scholar 

  41. Martin JB (1999) Molecular basis of the neurodegenerative disorders. N Engl J Med 340:1970–1980

    CAS  PubMed  Google Scholar 

  42. Martin LJ (2001) Neuronal cell death in nervous system development, disease, and injury (Review). Int J Mol Med 7:455–478

    CAS  PubMed  Google Scholar 

  43. Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296:1991–1995

    CAS  PubMed  Google Scholar 

  44. Choi DW (1992) Excitotoxic cell death. J Neurobiol 23:1261–1276

    CAS  PubMed  Google Scholar 

  45. Smith MA, Raina AK, Nunomura A, Hochman A, Takeda A, Perry G (2000) Apoptosis in Alzheimer disease: fact or fiction. Brain Pathol 10:797

    Google Scholar 

  46. Wyllie AH, Kerr JFR, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–305

    CAS  PubMed  Google Scholar 

  47. Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Duda JE, Lee VMY, Trojanowski JQ (2000) Neuropathology of synuclein aggregates. New insights into mechanism of neurodegenerative diseases. J Neurosci Res 61:121–127

    CAS  PubMed  Google Scholar 

  49. Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19:983–997

    CAS  PubMed  Google Scholar 

  50. Wang E, Kuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13:805–811

    Google Scholar 

  51. Lee S, Sato Y, Nixon RA (2011) Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer’s-like axonal dystrophy. J Neurosci 31:7817–7830

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Ravikumar B, Duden R, Rubinsztein D (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11:1107–1117

    CAS  PubMed  Google Scholar 

  53. Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16:558–564

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Bode W, Fernandez-Catalan C, Tschesche H, Grams F, Nagase H, Maskos K (1999) Structural properties of matrix metalloproteinases. Cell Mol Life Sci 55:639–652

    CAS  PubMed  Google Scholar 

  56. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839

    CAS  PubMed  Google Scholar 

  57. Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8:205–216

    CAS  PubMed  Google Scholar 

  58. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573

    CAS  PubMed  Google Scholar 

  59. Agrawal SM, Lau L, Yong VW (2008) MMPs in the central nervous system: where the good guys go bad. Semin Cell Dev Biol 19:42–51

    CAS  PubMed  Google Scholar 

  60. Lichtinghagen R, Seifert T, Kracke A, Marckmann S, Wurster U, Heidenreich F (1999) Expression of matrix metalloproteinase-9 and its inhibitors in mononuclear blood cells of patients with multiple sclerosis. J Neuroimmunol 99:19–26

    CAS  PubMed  Google Scholar 

  61. Yin KJ, Cirrito JR, Yan P, Hu X, Xiao Q, Pan X, Bateman R, Song H, Hsu FF, Turk J, Xu J, Hsu CY, Mills JC, Holtzman DM, Lee JM (2006) Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci 26:10939–10948

    CAS  PubMed  Google Scholar 

  62. Walsh DM, Minogue AM, Sala Frigerio C, Fadeeva JV, Wasco W, Selkoe DJ (2007) The APP family of proteins: similarities and diff erences. Biochem Soc Trans 35:416–420

    CAS  PubMed  Google Scholar 

  63. Yan P, Hu X, Song H, Yin K, Bateman RJ, Cirrito JR, Xiao Q, Hsu FF, Turk JW, Xu J, Hsu CY, Holtzman DM, Lee JM (2006) Matrix metalloproteinase-9 degrades amyloid-beta fi brils in vitro and compact plaques in situ. J Biol Chem 281:24566–24574

    CAS  PubMed  Google Scholar 

  64. Deb S, Gottschall PE (1996) Increased production of matrix metalloproteinases in enriched astrocyte and mixed hippocampal cultures treated with beta-amyloid peptides. J Neurochem 66:1641–1647

    CAS  PubMed  Google Scholar 

  65. Mizoguchi H, Takuma K, Fukuzaki E, Ibi D, Someya E, Akazawa KH, Alkam T, Tsunekawa H, Mouri A, Noda Y, Nabeshima T, Yamada K (2009) Matrix metalloprotease-9 inhibition improves amyloid beta-mediated cognitive impairment and neurotoxicity in mice. J Pharmacol Exp Ther 331:14–22

    CAS  PubMed  Google Scholar 

  66. Backstrom JR, Lim GP, Cullen MJ, Tokes ZA (1996) Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-beta peptide (1–40). J Neurosci 16:7910–7919

    CAS  PubMed  Google Scholar 

  67. Yoshiyama Y, Asahina M, Hattori T (2000) Selective distribution of matrix metalloproteinase-3 (MMP-3) in Alzheimer’s disease brain. Acta Neuropathol 99:91–95

    CAS  PubMed  Google Scholar 

  68. Stomrud E, Björkqvist M, Janciauskiene S, Minthon L, Hansson O (2010) Alterations of matrix metalloproteinases in the healthy elderly with increased risk of prodromal Alzheimer’s disease. Alzheimers Res Ther 2:20–27

    PubMed Central  PubMed  Google Scholar 

  69. Kim YS, Kim SS, Cho JJ, Choi DH, Hwang O, Shin DH, Chun HS, Beal MF, Joh TH (2005) Matrix metalloproteinase-3: a novel signaling proteinase from apoptotic neuronal cells that activates microglia. J Neurosci 25:3701–3711

    CAS  PubMed  Google Scholar 

  70. Choi DH, Kim EM, Son HJ, Joh TH, Kim YS, Kim D, Flint Beal M, Hwang O (2008) A novel intracellular role of matrix metalloproteinase-3 during apoptosis of dopaminergic cells. J Neurochem 106:405–415

    CAS  PubMed  Google Scholar 

  71. Heo JH, Lucero J, Abumiya T, Koziol JA, Copeland BR, del Zoppo GJ (1999) Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab 19:624–633

    CAS  PubMed  Google Scholar 

  72. Rosenberg GA, Cunningham LA, Wallace J, Alexander S, Estrada EY, Grossetete M, Razhagi A, Miller K, Gearing A (2001) Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res 893:104–112

    CAS  PubMed  Google Scholar 

  73. Yong VW, Power C, Forsyth P, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2:502–511

    CAS  PubMed  Google Scholar 

  74. Lo EH, Wang X, Cuzner ML (2002) Extracellular proteolysis in brain injury and inflammation: role for plasminogen activations and matrix metalloproteinases. J Neurosci Res 69:1–9

    CAS  PubMed  Google Scholar 

  75. Asahi M, Sumii T, Fini ME, Itohara S, Lo EH (2001) Matrix metalloproteinase 2 gene knockout has no effect on acute brain injury after focal ischemia. NeuroReport 12:3003–3007

    CAS  PubMed  Google Scholar 

  76. Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 29:1020–1030

    CAS  PubMed  Google Scholar 

  77. Rivera S, Ogier C, Jourquin J, Timsit S, Szklarczyk AW, Miller K, Gearing AJH, Kaczmarek L, Khrestchatisky (2002) Gelatinase B and TIMP-1 are regulated in a cell- and time-dependent manner in association with neuronal death and glial reactivity after global forebrain ischemia. Eur J Neurosci 15:19–22

    PubMed  Google Scholar 

  78. Cunningham LA, Wetzel M, Rosenberg GA (2005) Multiple roles for MMPs and TIMPs in cerebral ischemia. GLIA 50:329–339

    PubMed  Google Scholar 

  79. Suenaga N, Ichiyama T, Kubota M, Isumi H, Tohyama J, Furukawa S (2008) Roles of matrix metalloproteinase-9 and tissue inhibitors of metalloproteinases 1 in acute encephalopathy following prolonged febrile seizures. J Neurol Sci 266:126–130

    CAS  PubMed  Google Scholar 

  80. Rylski M, Amborska R, Zybura K, Michaluk P, Bielinska B, Konopacki FA, Wilczynski GM, Kaczmarek L (2009) JunB is a repressor of MMP-9 transcription in depolarized rat brain neurons. Mol Cell Neurosci 40:98–110

    CAS  PubMed  Google Scholar 

  81. Mizoguchi H, Nakade J, Tachibana M, Ibi D, Someya E, Koike H, Kamei H, Nabeshima T, Itohara S, Takuma K, Sawada M, Sato J, Yamada K (2011) Matrix metalloproteinase-9 contributes to kindled seizure development in pentylenetetrazole-treated mice by converting pro-BDNF to mature BDNF in the hippocampus. J Neurosci 31:12963–12971

    CAS  PubMed  Google Scholar 

  82. Fujioka H, Dairyo Y, Yasunaga K, Emoto K (2012) Neural functions of matrix metalloproteinases: plasticity, neurogenesis, and disease. Biochem Res Int. doi:10.1155/2012/789083

    PubMed Central  PubMed  Google Scholar 

  83. Sorokin L (2010) The impact of the extracellular matrix on inflammation. Nat Rev Immunol 10:712–723

    CAS  PubMed  Google Scholar 

  84. Faissner A, Pyka M, Geissler M, Sobic T, Frischknecht R, Gundelfinger ED, Seidenbecher C (2010) Contributions of astrocytes to synapse formation and maturation—potential functions of the perisynaptic extracellular matrix. Brain Res Rev 63:26–38

    CAS  PubMed  Google Scholar 

  85. Hove IV, Lemmens K, de Velde SV, Verslegers M, Moons L (2012) Matrix metalloproteinase-3 in the central nervous system: a look on the bright side. J Neurochem 123:203–216

    PubMed  Google Scholar 

  86. Amantea D, Corasaniti MT, Mercuri NB, Bernardi G, Bagetta G (2008) Brain regional and cellular localization of gelatinase activity in rat that have undergone transient middle cerebral artery occlusion. Neuroscience 152:8–17

    CAS  PubMed  Google Scholar 

  87. Yong VW (1999) The potential use of MMP inhibitors to treat CNS diseases. Exp Opin Invest Drugs 8:255–268

    CAS  Google Scholar 

  88. Szepesi Z, Bijata M, Ruszczycki B, Kaczmarek L, Wlodarczyk J (2013) Matrix metalloproteinases regulate the formation of dendritic spine head protrusions during chemically induced long-term potentiation. PLoS ONE 8(5):e63314. doi:10.1371/journal.pone.0063314

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Rivera S, Khrestchatisky M, Kaczmarek L, Rosenberg GA, Jaworski DM (2010) Metzincin proteases and their inhibitors: foes or friends in nervous system physiology? J Neurosci 30:15337–15357

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Huntley GW (2012) Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nat Rev Neurosci 13:743–757

    CAS  PubMed  Google Scholar 

  91. Westermarck J, Kahari VM (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13:781–792

    CAS  PubMed  Google Scholar 

  92. Costanzo RM, Perrino LA (2008) Peak in matrix metalloproteinases-2 levels observed during recovery from olfactory nerve injury. NeuroReport 19:327–331

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Planas AM, Sole S, Justicia C (2001) Expression and activation of matrix metalloproteinase-2 and-9 in rat brain after transient focal cerebral ischemia. Neurobiol Dis 8:834–846

    CAS  PubMed  Google Scholar 

  94. Hsu JY, McKeon R, Goussev S, Werb Z, Lee JU, Trivedi A, Noble-Haeusslein LJ (2006) Matrix metalloproteinase-2 facilitates wound healing events that promote functional recovery after spinal cord injury. J Neurosci 26:9841–9850

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Rosenberg GA (2002) Matrix metalloproteinases in neuroinflammation. Glia 3:279–291

    Google Scholar 

  96. Hu B, Jarzynka MJ, Guo P, Imanishi Y, Schlaepfer DD, Cheng SY (2006) Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer Res 66:775–783

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Conant K, Wang Y, Szklarczyk A, Dudak A, Mattson MP, Lim ST (2010) Matrix metalloproteinase-dependent shedding of intercellular adhesion molecule-5 occurs with long-term potentiation. Neuroscience 166:508–521

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Szklarczyk A, Conant K, Owens DF, Ravin R, McKay RD, Gerfen C (2007) Matrix metalloproteinase-7 modulates synaptic vesicle recycling and induces atrophy of neuronal synapses. Neuroscience 149:87–98

    CAS  PubMed  Google Scholar 

  99. Nagerl UV, Eberhorn N, Cambridge SB, Bonhoeffer T (2004) Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44:759–767

    PubMed  Google Scholar 

  100. Zhou Q, Homma KJ, Poo MM (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44:749–757

    CAS  PubMed  Google Scholar 

  101. Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science 313:1141–1144

    CAS  PubMed  Google Scholar 

  102. Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097

    CAS  PubMed  Google Scholar 

  103. Eyre MD, Richter-Levin G, Avital A, Stewart MG (2003) Morphological changes in hippocampal dentate gyrus synapses following spatial learning in rats are transient. Eur J Neurosci 17:1973–1980

    PubMed  Google Scholar 

  104. Rekart JL, Sandoval CJ, Bermudez-Rattoni F, Routtenberg A (2007) Remodeling of hippocampal mossy fibers is selectively induced seven days after the acquisition of a spatial but not a cued reference memory task. Learn Mem 14:416–421

    PubMed  Google Scholar 

  105. Rumpel S, LeDoux J, Zador A, Malinow R (2005) Postsynaptic receptor trafficking underlying a form of associative learning. Science 308:83–88

    CAS  PubMed  Google Scholar 

  106. Nagy V, Bozdagi O, Matynia A, Balcerzyk M, Okulski P, Dzwonek J, Costa RM, Silva AJ, Kaczmarek L, Huntley GW (2006) Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J Neurosci 26:1923–1934

    CAS  PubMed  Google Scholar 

  107. Brown TE, Forquer MR, Cocking DL, Jansen HT, Harding JW, Sorg BA (2007) Role of matrix metalloproteinases in the acquisition and reconsolidation of cocaine-induced conditioned place preference. Learn Mem 14:214–223

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Okulski P, Jay TM, Jaworski J, Duniec K, Dzwonek J, Konopacki FA, Wilczynski GM, Sanchez-Capelo A, Mallet J, Kaczmarek L (2007) TIMP-1 abolishes MMP-9-dependentlong-lasting long-term potentiation in the prefrontal cortex. Biol Psychiatry 62:359–362

    CAS  PubMed  Google Scholar 

  109. Benson DL, Schnapp L, Shapiro L, Huntley GW (2000) Making memories stick: cell -adhesion molecules in synaptic plasticity. Trends Cell Biol 10:473–482

    CAS  PubMed  Google Scholar 

  110. Dityatev A, Schachner M (2003) Extracellular matrix molecules and synaptic plasticity. Nat Rev Neurosci 4:456–468

    CAS  PubMed  Google Scholar 

  111. Bozdagi O, Nagy V, Kwei KT, Huntley GW (2007) In vivo roles for matrix metalloproteinase–9 in mature hippocampal synaptic physiology and plasticity. J Neurophysiol 98:334–344

    CAS  PubMed  Google Scholar 

  112. Wang XB, Bozdagi O, Nikitczuk JS, Zhai ZW, Zhou Q, Huntley GW (2008) Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proc Natl Acad Sci USA 105:19520–19525

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Nagy V, Bozdagi O, Huntley GW (2007) The extracellular protease matrix metalloproteinase-9 is activated by inhibitory avoidance learning and required for long-term memory. Learn Mem 14:655–664

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Fragkouli A, Papatheodoropoulos C, Georgopoulos S, Stamatakis A, Stylianopoulou F, Tsilibary EC, Tzinia AK (2012) Enhanced neuronal plasticity and elevated endogenous sAPPα levels in mice over-expressing MMP9. J Neurochem 121:239–251

    CAS  PubMed  Google Scholar 

  115. Wiediger RV, Wright JW (2009) Influence of dorsal hippocampal lesions and MMP inhibitors on spontaneous recovery following a habituation/classical conditioning head-shake task. Neurobiol Learn Mem 92:504–511

    CAS  PubMed  Google Scholar 

  116. Wright JW, Meighan PC, Brown TE, Wiediger RV, Sorg BA, Harding JW (2009) Habituation-induced neural plasticity in the hippocampus and prefrontal cortex mediated by MMP-3. Behav Brain Res 203:27–34

    CAS  PubMed  Google Scholar 

  117. Olson ML, Meighan PC, Brown TE, Asay AL, Benoist CC, Harding JW, Wright JW (2008) Hippocampal MMP-3 elevation is associated with passive avoidance conditioning. Regul Pept 146:19–25

    CAS  PubMed  Google Scholar 

  118. Tian L, Stefanidakis M, Ning L, Van Lint P, Nyman-Huttunen H, Libert C, Itohara S, Mishina M, Rauvala H, Gahmberg CG (2007) Activation of NMDA receptors promotes dendritic spine development through MMP-mediated ICAM-5 cleavage. J Cell Biol 178:687–700

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Bilousova TV, Rusakov DA, Ethell DW, Ethell IM (2006) Matrix metalloproteinase-7 disrupts dendritic spines in hippocampal neurons through NMDA receptor activation. J Neurochem 97:44–56

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Park J, Lim E, Back S, Na H, Park Y, Sun K (2010) Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brain-derived neurotrophic factor. J Biomed Mater Res A 93:1091–1099

    PubMed  Google Scholar 

  121. Siebert H, Dippel N, M¨ader M, Weber F, Br¨uck W (2001) Matrix metalloproteinase expression and inhibition after sciatic nerve axotomy. J Neuropathol Expl Neurol 60:85–93

    CAS  Google Scholar 

  122. Shubayev VI, Angert M, Dolkas J, Campana WM, Palenscar K, Myers RR (2006) TNFalpha-induced MMP-9 promotes macrophage recruitment into injured peripheral nerve. Mol Cell Neurosci 31:407–415

    CAS  PubMed  Google Scholar 

  123. Zou T, Ling C, Xiao Y, Tao X, Ma D, Chen ZL, Strickland S, Song H (2006) Exogenous tissue plasminogen activator enhances peripheral nerve regeneration and functional recovery after injury in mice. J Neuropathol Exp Neurol 65:78–86

    CAS  PubMed  Google Scholar 

  124. Meli DN, Loeffler JM, Baumann P, Neumann U, Buhl T, Leppert D, Leib SL (2004) In pneumococcal meningitis a novel water-soluble inhibitor of matrix metalloproteinases and TNF-alpha converting enzyme attenuates seizures and injury of the cerebral cortex. J Neuroimmunol 151:6–11

    CAS  PubMed  Google Scholar 

  125. Meli DN, Coimbra RS, Erhart DG, Loquet G, Bellac CL, Täuber MG, Neumann U, Leib SL (2006) Doxycycline reduces mortality and injury to the brain and cochlea in experimental pneumococcal meningitis. Infect Immun 74:3890–3896

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Metz LM, Zhang Y, Yeung M, Patry DG, Bell RB, Stoian CA, Yong VW, Patten SB, Duquette P, Antel JP, Mitchell JR (2004) Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann Neurol 55:756

    PubMed  Google Scholar 

  127. Solorzano CC, Ksontini R, Pruitt JH, Hess PJ, Edwards PD, Kaibara A, Abouhamze A, Auffenberg T, Galardy RE, Vauthey JN, Copeland EM 3rd, Edwards CK 3rd, Lauwers GY, Clare-Salzler M, MacKay SL, Moldawer LL, Lazarus DD (1997) Involvement of 26-kDa cell-associated TNF-alpha in experimental hepatitis and exacerbation of liver injury with a matrix metalloproteinase inhibitor. J Immunol 158:414–419

    CAS  PubMed  Google Scholar 

  128. Wojtowicz-Praga S (1999) Clinical potential of matrix metalloprotease inhibitors. Drugs RD 2:117–129

    Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge the CSIR Network Projects INDEPTH (BSC0111) and TREAT (BSC0116) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhishek Mukherjee or Snehasikta Swarnakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Swarnakar, S. Implication of matrix metalloproteinases in regulating neuronal disorder. Mol Biol Rep 42, 1–11 (2015). https://doi.org/10.1007/s11033-014-3752-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3752-y

Keywords

Navigation