Skip to main content

Advertisement

Log in

Transcriptome profiling of biliary atresia from new born infants by deep sequencing

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Biliary atresia is the major kind of liver disease that mainly affects the new born infants. The pathological and biological mechanism of biliary atresia is still unclear to date. In this work, we attempt to identify biliary atresia relevant genes and to get the knowledge of the underlying genetic basis. We collected liver samples from new born infants with biliary atresia and congenital choledochocyst, and the RNA-seq technology was used to performed a transcriptome profiling in order to comprehensively study their expression signatures. We identified 877 differentially expressed genes between samples from biliary atresia and congenital choledochocyst patients in total. Several biological pathways related to the immunity and inflammation response were found to involve in the development of biliary atresia. Our results may helps to better investigate the molecular mechanisms of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Petersen C (2006) Pathogenesis and treatment opportunities for biliary atresia. Clin Liver Dis 10(1):73–88

    Article  PubMed  Google Scholar 

  2. Bates MD, Bucuvalas JC, Alonso MH, Ryckman FC (1998) Biliary atresia: pathogenesis and treatment. Semin Liver Dis 18(3):281–293

    Article  CAS  PubMed  Google Scholar 

  3. Ryckman FC, Alonso MH, Bucuvalas JC, Balistreri WF (1998) Biliary atresia–surgical management and treatment options as they relate to outcome. Liver Transpl Surg 4(5 Suppl 1):S24–S33

    CAS  PubMed  Google Scholar 

  4. Otte JB, de Ville de Goyet J, Reding R, Hausleithner V, Sokal E, Chardot C, Debande B (1994) Sequential treatment of biliary atresia with Kasai portoenterostomy and liver transplantation: a review. Hepatology 20(1 Pt 2):41S–48S

    CAS  PubMed  Google Scholar 

  5. Sharma MS, Poddar U (2012) Biliary atresia and cytomegalovirus infection. Indian Pediatr 49(2):159

    PubMed  Google Scholar 

  6. Metzker ML (2010) Sequencing technologies: the next generation. Nat Rev Genet 11(1):31–46

    Article  CAS  PubMed  Google Scholar 

  7. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36

    Article  PubMed Central  PubMed  Google Scholar 

  8. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Blake JA, Dolan M, Drabkin H, Hill DP, Li N, Sitnikov D, Bridges S, Burgess S, Buza T, McCarthy F, Peddinti D, Pillai L, Carbon S, Dietze H, Ireland A, Lewis SE, Mungall CJ, Gaudet P, Chrisholm RL, Fey P, Kibbe WA, Basu S, Siegele DA, McIntosh BK, Renfro DP, Zweifel AE, Hu JC, Brown NH, Tweedie S, Alam-Faruque Y, Apweiler R, Auchinchloss A, Axelsen K, Bely B, Blatter M, Bonilla C, Bouguerleret L, Boutet E, Breuza L, Bridge A, Chan WM, Chavali G, Coudert E, Dimmer E, Estreicher A, Famiglietti L, Feuermann M, Gos A, Gruaz-Gumowski N, Hieta R, Hinz C, Hulo C, Huntley R, James J, Jungo F, Keller G, Laiho K, Legge D, Lemercier P, Lieberherr D, Magrane M, Martin MJ, Masson P, Mutowo-Muellenet P, O’Donovan C, Pedruzzi I, Pichler K, Poggioli D, Porras Millan P, Poux S, Rivoire C, Roechert B, Sawford T, Schneider M, Stutz A, Sundaram S, Tognolli M, Xenarios I, Foulgar R, Lomax J, Roncaglia P, Khodiyar VK, Lovering RC, Talmud PJ, Chibucos M, Giglio MG, Chang H, Hunter S, McAnulla C, Mitchell A, Sangrador A, Stephan R, Harris MA, Oliver SG, Rutherford K, Wood V, Bahler J, Lock A, Kersey PJ, McDowall DM, Staines DM, Dwinell M, Shimoyama M, Laulederkind S, Hayman T, Wang S, Petri V, Lowry T, D’Eustachio P, Matthews L, Balakrishnan R, Binkley G, Cherry JM, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hitz BC, Hong EL, Karra K, Miyasato SR, Nash RS, Park J, Skrzypek MS, Weng S, Wong ED, Berardini TZ, Huala E, Mi H, Thomas PD, Chan J, Kishore R, Sternberg P, Van Auken K, Howe D, Westerfield M (2013) Gene Ontology annotations and resources. Nucleic Acids Res 41 (Database issue):D530-535

  11. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36(Database issue):D480–D484

    PubMed Central  CAS  PubMed  Google Scholar 

  12. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  13. Saito T, Hishiki T, Terui K, Mitsunaga T, Terui E, Nakata M, Yoshida H (2011) Toll-like receptor mRNA expression in liver tissue from patients with biliary atresia. J Pediatr Gastroenterol Nutr 53(6):620–626

    CAS  PubMed  Google Scholar 

  14. Iordanskaia T, Hubal MJ, Koeck E, Rossi C, Schwarz K, Nadler EP (2013) Dysregulation of upstream and downstream transforming growth factor-beta transcripts in livers of children with biliary atresia and fibrogenic gene signatures. J Pediatr Surg 48(10):2047–2053

    Article  PubMed Central  PubMed  Google Scholar 

  15. Koniaris LG, Zimmers-Koniaris T, Hsiao EC, Chavin K, Sitzmann JV, Farber JM (2001) Cytokine-responsive gene-2/IFN-inducible protein-10 expression in multiple models of liver and bile duct injury suggests a role in tissue regeneration. J Immunol 167(1):399–406

    Article  CAS  PubMed  Google Scholar 

  16. Dufner A, Mak TW (2006) CARD tricks: controlling the interactions of CARD6 with RICK and microtubules. Cell Cycle 5(8):797–800

    Article  CAS  PubMed  Google Scholar 

  17. Lee HC, Chang TY, Yeung CY, Chan WT, Jiang CB, Chen WF, Chan HW, Liu HF, Lin M, Lee YJ (2010) Genetic variation in the vascular endothelial growth factor gene is associated with biliary atresia. J Clin Gastroenterol 44(2):135–139

    Article  CAS  PubMed  Google Scholar 

  18. Tsai EA, Grochowski CM, Loomes KM, Bessho K, Hakonarson H, Bezerra JA, Russo PA, Haber BA, Spinner NB, Devoto M (2014) Replication of a GWAS signal in a Caucasian population implicates ADD3 in susceptibility to biliary atresia. Hum Genet 133(2):235–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Garcia-Barcelo MM, Yeung MY, Miao XP, Tang CS, Cheng G, So MT, Ngan ES, Lui VC, Chen Y, Liu XL, Hui KJ, Li L, Guo WH, Sun XB, Tou JF, Chan KW, Wu XZ, Song YQ, Chan D, Cheung K, Chung PH, Wong KK, Sham PC, Cherny SS, Tam PK (2010) Genome-wide association study identifies a susceptibility locus for biliary atresia on 10q24.2. Hum Mol Genet 19(14):2917–2925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Shinkai M, Shinkai T, Puri P, Stringer MD (2006) Elevated expression of IL2 is associated with increased infiltration of CD8 + T cells in biliary atresia. J Pediatr Surg 41(2):300–305

    Article  PubMed  Google Scholar 

  21. Chen L, Goryachev A, Sun J, Kim P, Zhang H, Phillips MJ, Macgregor P, Lebel S, Edwards AM, Cao Q, Furuya KN (2003) Altered expression of genes involved in hepatic morphogenesis and fibrogenesis are identified by cDNA microarray analysis in biliary atresia. Hepatology 38(3):567–576

    Article  CAS  PubMed  Google Scholar 

  22. Liu B, Shuai K (2008) Targeting the PIAS1 SUMO ligase pathway to control inflammation. Trends Pharmacol Sci 29(10):505–509

    Article  PubMed Central  PubMed  Google Scholar 

  23. Gilmore TD (1999) The Rel/NF-kappaB signal transduction pathway: introduction. Oncogene 18(49):6842–6844

    Article  CAS  PubMed  Google Scholar 

  24. Jia D, Duan F, Peng P, Sun L, Liu X, Wang L, Wu W, Ruan Y, Gu J (2013) Up-regulation of RACK1 by TGF-beta1 promotes hepatic fibrosis in mice. PLoS One 8(3):e60115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Harada K, Sato Y, Isse K, Ikeda H, Nakanuma Y (2008) Induction of innate immune response and absence of subsequent tolerance to dsRNA in biliary epithelial cells relate to the pathogenesis of biliary atresia. Liver Int 28(5):614–621

    Article  CAS  PubMed  Google Scholar 

  26. Reedquist KA, Tak PP (2012) Signal transduction pathways in chronic inflammatory autoimmune disease: small GTPases. Open Rheumatol J 6:259–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. De Filippo K, Dudeck A, Hasenberg M, Nye E, van Rooijen N, Hartmann K, Gunzer M, Roers A, Hogg N (2013) Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood 121(24):4930–4937

    Article  PubMed  Google Scholar 

  28. Orton RJ, Sturm OE, Vyshemirsky V, Calder M, Gilbert DR, Kolch W (2005) Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem J 392(Pt 2):249–261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Jafri M, Donnelly B, McNeal M, Ward R, Tiao G (2007) MAPK signaling contributes to rotaviral-induced cholangiocyte injury and viral replication. Surgery 142(2):192–201

    Article  PubMed  Google Scholar 

  30. Schlaepfer DD, Broome MA, Hunter T (1997) Fibronectin-stimulated signaling from a focal adhesion kinase-c-Src complex: involvement of the Grb2, p130cas, and Nck adaptor proteins. Mol Cell Biol 17(3):1702–1713

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53:409–435

    Article  CAS  PubMed  Google Scholar 

  32. Ahmad S, Kumar KA, Basak T, Bhardwaj G, Yadav DK, Lalitha A, Chandak GR, Raghunath M, Sengupta S (2013) PPAR signaling pathway is a key modulator of liver proteome in pups born to vitamin B(12) deficient rats. J Proteomics 91:297–308

    Article  CAS  PubMed  Google Scholar 

  33. Yuan X, Yan S, Zhao J, Shi D, Yuan B, Dai W, Jiao B, Zhang W, Miao M (2011) Lipid metabolism and peroxisome proliferator-activated receptor signaling pathways participate in late-phase liver regeneration. J Proteome Res 10(3):1179–1190

    Article  CAS  PubMed  Google Scholar 

  34. Peinado JR, Ruiz AD, Fruhbeck G, Malagon MM (2013) Mitochondria in metabolic disease. Getting clues from proteomic studies. Proteomics 14(4–5):452–466

    Google Scholar 

  35. Garcia-Ruiz C, Baulies A, Mari M, Garcia-Roves PM, Fernandez-Checa JC (2013) Mitochondrial dysfunction in non-alcoholic fatty liver disease and insulin resistance: cause or consequence? Free Radic Res 47(11):854–868

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by Young talent project of Shanghai Board of health and the funding No. is 2012Y131.

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-rui Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Xia, Sy., Xia, Y. et al. Transcriptome profiling of biliary atresia from new born infants by deep sequencing. Mol Biol Rep 41, 8063–8069 (2014). https://doi.org/10.1007/s11033-014-3704-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3704-6

Keywords

Navigation