Molecular Biology Reports

, Volume 41, Issue 12, pp 7755–7761 | Cite as

Microsatellite genetic diversity of Apis mellifera meda skorikov

  • Ataollah Rahimi
  • Alinaghi Mirmoayedi
  • Danial Kahrizi
  • Rohollah Abdolshahi
  • Elham Kazemi
  • Kheirollah YariEmail author


The genetic diversity of three Iranian honey bee populations (Apis mellifera meda) was studied using morphological and microsatellite loci in south Iran. For this purpose ten morphological characters and five microsatellite loci were studied. Morphometric analysis resulted in a distinct classification of three investigated populations but showed low diversity among them. The grouping results of the diversity study by microsatellite markers were in agreement with the results of morphometry. The cluster analysis showed that the honey bees have clustered together in one group. These populations displayed low variability estimated from both the number of alleles and heterozygosity values. Genetic differentiation within the populations is low and low heterozygosity was also presented between diverse populations. These results indicate the existence of a single population structure. The results of current research confirmed us the previous findings concerning morphological and biochemical indications of uniformity in the honey bee population of the south Iran in spite of the fact that the cities which was studied by us separated from each other by a distance of 500 km.


Honey bee Apis mellifera meda Genetic diversity Microsatellites Morphology Kerman (Iran) 



We thank the kind beekeepers of Kerman Province, which permitted us to collect the bees from their bee colonies and Dr. Ghasem Mohammadinejad (Shahid Bahonar University of Kerman) for help in statistical analysis. Thanks to Zagros Biotechnology Section of Razi University Incubator for All Supports.


  1. 1.
    Jensen AB, Palmer KA, Boomsma JJ, Pedersen BV (2005) Varying degrees of Apis mellifera ligustica introgression in protected populations of the black honeybee, Apis mellifera mellifera, in northwest Europe. Mol Ecol 14(1):93–106CrossRefPubMedGoogle Scholar
  2. 2.
    Woyke J (1976) Population genetic studies on sex alleles in the honeybee using the example of the Kangaroo Island bee sanctuary. J Apic Res 15(3/4):105–123Google Scholar
  3. 3.
    Woyke J (1980) Effect of sex allele homo-heterozygosity on honeybee colony populations and on their honey production. 1. Favourable development conditions and unrestricted queens. J Apic Res 19(1):51–63Google Scholar
  4. 4.
    Woyke J (1981) Effect of sex allele homo-heterozygosity on honeybee colony populations and on their honey production. 2. Unfavorable development conditions and restricted queens. J Apic Res 20:148–155Google Scholar
  5. 5.
    Oldroyd BP, Rinderer TE, Harbo JR, Buco SM (1992) Effects of intracolonial genetic diversity on honey bee (Hymenoptera: Apidae) colony performance. Ann Entomol Soc Am 85(3):335–343CrossRefGoogle Scholar
  6. 6.
    Mattila HR, Seeley TD (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317(5836):362–364CrossRefPubMedGoogle Scholar
  7. 7.
    Ting Ji L, Ling Y, Guohing C (2011) Genetic diversity and population structure of Chinese honeybee (Apis mellifera) under microsatellite markers. Afr J Biotechnol 10(9):1712–1720Google Scholar
  8. 8.
    Tarpy D (2003) Bet hedging by honey bee queens. Am Bee J 143(12):937–939Google Scholar
  9. 9.
    Tarpy DR, Seeley TD (2006) Lower disease infections in honeybee (Apis mellifera) colonies headed by polyandrous vs monandrous queens. Naturwissenschaften 93(4):195–199CrossRefPubMedGoogle Scholar
  10. 10.
    Palmer KA, Oldroyd BP (2003) Evidence for intra-colonial genetic variance in resistance to American foulbrood of honey bees (Apis mellifera): further support for the parasite/pathogen hypothesis for the evolution of polyandry. Naturwissenschaften 90(6):265–268CrossRefPubMedGoogle Scholar
  11. 11.
    Tarpy DR, Page RE Jr (2001) The curious promiscuity of queen honey bees (Apis mellifera): evolutionary and behavioral mechanisms. Ann Zool Fenn 3:255–265Google Scholar
  12. 12.
    Ruttner F, Tassenocourt L, Louvaux J (1978) Biometrical–statistical analysis of the geographic variability of Apis mellifera L. Apidologie 9(4):363–381CrossRefGoogle Scholar
  13. 13.
    Estoup A, Solignac M, Cornuet J-M (1994) Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies. Proc R Soc Lond B 258(1351):1–7CrossRefGoogle Scholar
  14. 14.
    Estoup A, Garnery L, Solignac M, Cornuet J-M (1995) Microsatellite variation in honey bee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics 140(2):679–695PubMedCentralPubMedGoogle Scholar
  15. 15.
    Franck P, Garnery L, Solignac M, Cornuet J-M (2000) Molecular confirmation of a fourth lineage in honeybees from Near East. Apidologie 31(2):167–180CrossRefGoogle Scholar
  16. 16.
    Garnery L, Franck P, Baudry E, Vautrin D, Cornuet J-M, Solignac M (1998) Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica) II. Microsatellite loci. Genet Sel Evol 30(Supplement):S49–S74CrossRefGoogle Scholar
  17. 17.
    Tahmasbi GH (1996) Morphological and biochemical survey of honey bee (Apis mellifera L.) populations in Iran. Tarbiat Modares University, TehranGoogle Scholar
  18. 18.
    Royan M, Rahim G, Esmaeilkhanian S, Mirhoseini S, Ansari Z (2007) A study on the genetic diversity of the Apis mellifera meda population in the south coast of the Caspian Sea using microsatellite markers. J Apic Res 46(4):236–241CrossRefGoogle Scholar
  19. 19.
    Alpatov W (1929) Biometrical studies on variation and races of the honey bee (Apis mellifera L.). Q Rev Biol 4:1–58Google Scholar
  20. 20.
    Goetze G (1940) The best bee: methods for selecting bees for (great) length of tongue. Insectes Soc. 3:335–346Google Scholar
  21. 21.
    Goetze G (1959) Die Bedeitung des Flügelgeäders für die Züchterische Beurteilung der Honigbiene. Zeitscrift für Bienenforschung 4:141–148Google Scholar
  22. 22.
    Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693Google Scholar
  23. 23.
    Meixener-Monori B, Kubicek CP, Harrer W, Schreferl G, Rohr M (1986) NADP-specific isocitrate dehydrogenase from the citric acid-accumulating fungus Aspergillus niger. Biochem J 236:549–557Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ataollah Rahimi
    • 1
    • 2
  • Alinaghi Mirmoayedi
    • 1
  • Danial Kahrizi
    • 2
    • 3
  • Rohollah Abdolshahi
    • 4
  • Elham Kazemi
    • 2
  • Kheirollah Yari
    • 2
    Email author
  1. 1.Department of Plant ProtectionRazi UniversityKermanshahIran
  2. 2.Medical Biology Research CenterKermanshah University of Medical SciencesKermanshahIran
  3. 3.Department of Agronomy and Plant BreedingRazi UniversityKermanshahIran
  4. 4.Department of Agronomy and Plant BreedingShahid Bahonar UniversityKermanIran

Personalised recommendations