Molecular Biology Reports

, Volume 41, Issue 11, pp 7067–7071 | Cite as

Aragonite shells are more ancient than calcite ones in bivalves: new evidence based on omics

  • Xiaotong Wang
  • Li Li
  • Yabing Zhu
  • Xiaorui Song
  • Xiaodong Fang
  • Ronglian Huang
  • Huayong Que
  • Guofan ZhangEmail author


Two calcium carbonate crystal polymorphs, aragonite and calcite, are the main inorganic components of mollusk shells. Some fossil evidences suggest that aragonite shell is more ancient than calcite shell for the Bivalvia. But, the molecular biology evidence for the above deduction is absent. In this study, we searched for homologs of bivalve aragonite-related and calcite-related shell proteins in the oyster genome, and found that no homologs of calcite-related shell protein but some homologs of aragonite-related shell proteins in the oyster genome. We explained the results as the new evidence to support that aragonite shells are more ancient than calcite shells in bivalves combined the published biogeological and seawater chemistry data.


Crassostrea gigas Aragonite shell Calcite shell Aragonite sea Calcite sea Biomineralization 



This research was supported by the National Basic Research Program of China (973 Program) (no. 2010CB126401), the National Natural Science Foundation of China (no. 40730845 and 31302181), the earmarked fund for Modern Agro-industry Technology Research System, Taishan Scholar Program of Shandon and Taishan Scholars Climb Program of Shandong.


  1. 1.
    Marin F, Luquet G, Marie B, Medakovic D (2007) Molluscan shell proteins: primary structure, origin, and evolution. Curr Top Dev Biol 80:209–276CrossRefGoogle Scholar
  2. 2.
    Harper E, Palmer T, Alphey J (1997) Evolutionary response by bivalves to changing Phanerozoic sea-water chemistry. Geol Mag-Lond 134:403–407CrossRefGoogle Scholar
  3. 3.
    Jackson DJ, McDougall C, Woodcroft B, Moase P, Rose RA, Kube M, Reinhardt R, Rokhsar DS, Montagnani C, Joubert C (2010) Parallel evolution of nacre building gene sets in molluscs. Mol Biol Evol 27:591–608PubMedCrossRefGoogle Scholar
  4. 4.
    Porter SM (2007) Seawater chemistry and early carbonate biomineralization. Science 316:1302PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PW, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y, Domazet-Loso T, Du Y, Sun X, Zhang S, Liu B, Cheng P, Jiang X, Li J, Fan D, Wang W, Fu W, Wang T, Wang B, Zhang J, Peng Z, Li Y, Li N, Wang J, Chen M, He Y, Tan F, Song X, Zheng Q, Huang R, Yang H, Du X, Chen L, Yang M, Gaffney PM, Wang S, Luo L, She Z, Ming Y, Huang W, Zhang S, Huang B, Zhang Y, Qu T, Ni P, Miao G, Wang J, Wang Q, Steinberg CE, Wang H, Li N, Qian L, Zhang G, Li Y, Yang H, Liu X, Wang J, Yin Y, Wang J (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54PubMedCrossRefGoogle Scholar
  6. 6.
    Porter SM (2010) Calcite and aragonite seas and the de novo acquisition of carbonate skeletons. Geobiology 8:256–277PubMedCrossRefGoogle Scholar
  7. 7.
    Kocot KM, Cannon JT, Todt C, Citarella MR, Kohn AB, Meyer A, Santos SR, Schander C, Moroz LL, Lieb B, Halanych KM (2011) Phylogenomics reveals deep molluscan relationships. Nature 477:452–456PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lee SW, Jang YN, Kim JC (2011) Characteristics of the aragonitic layer in adult oyster shells, Crassostrea gigas: structural study of myostracum including the adductor muscle scar. Evid Based Complement Altern Med 2011:742963Google Scholar
  9. 9.
    Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeoclimatol Palaeoecol 144:3–19CrossRefGoogle Scholar
  10. 10.
    Ries JB (2005) Aragonite production in calcite seas: effect of seawater Mg/Ca ratio on the calcification and growth of the calcareous alga Penicillus capitatus. Paleobiology 31:445–458CrossRefGoogle Scholar
  11. 11.
    Maloof AC, Porter SM, Moore JL, Dudás FÖ, Bowring SA, Higgins JA, Fike DA, Eddy MP (2010) The earliest Cambrian record of animals and ocean geochemical change. Geol Soc Am Bull 122:1731–1774CrossRefGoogle Scholar
  12. 12.
    Lecointre G, Le Guyader H, Visset D (2001) Classification phylogénétique du vivant, vol 2. Belin, ParisGoogle Scholar
  13. 13.
    Taylor JD (1973) The structural evolution of the bivalve shell. Palaeontology 16:519–534Google Scholar
  14. 14.
    Philippe H, Chenuil A, Adoutte A (1994) Can the Cambrian explosion be inferred through molecular phylogeny? Development 1994:15–25Google Scholar
  15. 15.
    Meyer SC, Ross M, Nelson P, Chien P (2003) The Cambrian explosion: biology’s big bang. Michigan State University Press, MichiganGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Xiaotong Wang
    • 1
  • Li Li
    • 1
  • Yabing Zhu
    • 2
  • Xiaorui Song
    • 1
  • Xiaodong Fang
    • 2
  • Ronglian Huang
    • 1
  • Huayong Que
    • 1
  • Guofan Zhang
    • 1
    Email author
  1. 1.National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.BGI-ShenzhenShenzhenChina

Personalised recommendations