Skip to main content
Log in

Purification and mass spectrometry based characterization of a pediocin produced by Pediococcus acidilactici 13

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Bacteriocins are antimicrobial peptides produced by several bacterial species. Among the bacteriocins pediocin-like bacteriocins have a significant inhibitory activity on the foodborne pathogens especially on Listeria monocytogenes. This study aims to select a simple and usable purification method to purify/concentrate the antimicrobial peptide and characterization of the bacteriocin produced by Pediococcus acidilactici 13 by using proteomic approaches which is a recent omic technology. For purification dialysis, ultrafiltration method was used, and as a result of this study the bacteriocin activity reached 819,200 AU/mL from 102,400 AU/mL initially. Two dimensional gel electrophoresis and then matrix-assisted laser desorption ionization/time of flight mass spectrometry (MALDI-TOF MS) analysis were carried out to identify the current bacteriocin and related proteins. Obtained data revealed similarity to pediocin PA-1 transport/processing ATP-binding protein PedD (accession number: P36497), pediocin operon PedC (accession number: Q68GC4) and bacteriocin pediocin PA-1 (accession number: P29430) from UniProtKB/Swiss-Prot databank, thus the bacteriocin produced by P. acidilactici 13 is considered similar to pediocin PA-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vaucher RA, Gewehr CCV, Correa APF, Sant‘Anna V, Ferreira J, Brandelli A (2011) Evaluation of the immunogenicity and in vivo toxicity of the antimicrobial peptide P34. Int J Pharm 421:94–98

    Article  Google Scholar 

  2. Duffes F, Jenoe P, Boyaval P (2000) Use of two-dimensional electrophoresis to study differential protein expression in divercin V41-resistant and wild-type strains of Listeria monocytogenes. Appl Environ Microbiol 66(10):4318–4324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Anastasiadou S, Papagianni M, Filiousis G, Ambrosiadis I, Koidis P (2008) Growth and metabolism of a meat isolated strain of Pediococcus pentosaceus in submerged fermentation. Purification, characterisation and properties of the produced pediocin SM-1. Enzyme Microb Technol 43:448–454

    Article  CAS  Google Scholar 

  4. Altuntas EG, Kocan D, Cosansu S, Ayhan K, Juneja VJ, Materon L (2012) Antibiotic and bacteriocin sensitivity of Listeria monocytogenes strains isolated from different foods. Food Nutr Sci 3(3):363–368

    Article  CAS  Google Scholar 

  5. Biswas SR, Ray P, Johnson MC, Ray B (1991) Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Appl Environ Microbiol 57:1265–1267

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Elegado F, June Kim W, Young Kwon D (1997) Rapid purification, partial characterization, and antimicrobial spectrum of the bacteriocin, Pediocin AcM, from Pediococcus acidilactici M. Int J Food Microbiol 37:1–11

    Article  CAS  PubMed  Google Scholar 

  7. Gurira OZ, Buys EM (2005) Characterization and antimicrobial activity of Pediococcus species isolated from South African farm-style cheese. Food Microbiol 22:159–168

    Article  CAS  Google Scholar 

  8. Papagianni M, Anastasiadou S (2009) Pediocins: the bacteriocins of Pediococci. Sources, production, properties and applications. Microb Cell Fact 8:3. doi:10.1186/1475-2859-8-3

    Article  PubMed Central  PubMed  Google Scholar 

  9. Deraz SF, Karlsson EN, Hedström M, Andersson MM, Mattiasson B (2005) Purification and characterisation of acidocin D20079, a bacteriocin produced by Lactobacillus acidophilus DSM 20079. J Biotechnol 117:343–354

    Article  CAS  PubMed  Google Scholar 

  10. Xiraphi N, Georgalaki M, Rantsiou K, Cocolin L, Tsakalidou E, Drosinos EH (2008) Purification and characterization of a bacteriocin produced by Leuconostoc mesenteroides E131. Meat Sci 80:194–203

    Article  CAS  PubMed  Google Scholar 

  11. Gravesen A, Ramnath M, Rechinger KB, Andersen N, Jansch L, Hechard Y, Hastings JW, Knochel S (2002) High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology 148:2361–2369

    CAS  PubMed  Google Scholar 

  12. Schneider R, Fernandez RJ, Aguilar MB, Guerrero-Legarreta I, Alpuche-Solis A, Ponce-Alquicira E (2006) Partial characterization of a class IIa pediocin produced by Pediococcus parvulus 133 strain isolated from meat (Mexican chorizo). Food Control 17:909–915

    Article  CAS  Google Scholar 

  13. Cosansu S, Kuleasan H, Ayhan K, Materon L (2007) Antimicrobial activity and protein profiles of Pediococcus spp. isolated from Turkish “Sucuk”. J Food Process Preserv 31:190–200

    Article  CAS  Google Scholar 

  14. Albano H, Todorov SD, van Reenen CA, Hogg T, Dicks LMT, Teixeira P (2007) Characterization of two bacteriocins produced by Pediococcus acidilactici isolated from “Alheira”, a fermented sausage traditionally produced in Portugal. Int J Food Microbiol 116:239–247

    Article  CAS  PubMed  Google Scholar 

  15. Altuntas EG, Cosansu S, Ayhan K (2010) Some growth parameters and antimicrobial activity of a bacteriocin-producing strain Pediococcus acidilactici 13. Int J Food Microbiol 141:28–31

    Article  CAS  PubMed  Google Scholar 

  16. Tominaga T, Hatakeyama Y (2006) Determination of essential and variable residues in pediocin PA-1 by NNK scanning. Appl Environ Microbiol 72(2):1141–1147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Sofos JN, Geornaras I (2010) Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157:H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat products. Meat Sci 86:2–14

    Article  PubMed  Google Scholar 

  18. van Kuijk S, Noll KS, Chikindas ML (2011) The species-specific mode of action of the antimicrobial peptide subtilosin against Listeria monocytogenes Scott A. Lett Appl Microbiol 54:52–58

    Article  PubMed  Google Scholar 

  19. Carolissen-Mackay V, Arendse G, Hastings JW (1997) Purification of bacteriocins of lactic acid bacteria: problems and pointers. Int J Food Microbiol 34:1–16

    Article  CAS  PubMed  Google Scholar 

  20. Igci N, Demiralp DO (2011) A preliminary investigation into the venom proteome of Macrovipera lebetina obtusa (Dwigubsky, 1832) from Southeastern Anatolia by MALDI-TOF mass spectrometry and comparison of venom protein profiles with Macrovipera lebetina lebetina (Linnaeus, 1758) from Cyprus by 2D-PAGE. Arch Toxicol doi: 10.1007/s00204-011-0763-5

  21. Anderson NL, Matheson AD, Steiner S (2000) Proteomics: applications in basic and applied biology. Curr Opin Biotech 11:408–412

    Article  CAS  PubMed  Google Scholar 

  22. Hamdan M, Righetti PG 2005 Proteomics today. protein assessment and biomarkers using mass spectrometry, 2D electrophoresis, and microarray technology. New Jersey: John Wiley & Sons, Inc

  23. Peker S, Akar N, Demiralp DO (2012) Proteomic identification of erythrocyte membrane protein deficiency in hereditary spherocytosis. Mol Biol Rep 39:3161–3167

    Article  CAS  PubMed  Google Scholar 

  24. Hindre T, Didelot S, Le Pennec JP, Haras D, Dufour A, Vallee-Rehel K (2003) Bacteriocin detection from whole bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 69(2):1051–1058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Schved F, Lalazar A, Henis Y, Juven BJ (1993) Purification, partial characterization and plasmid-linkage of pediocin SJ-1, a bacteriocin produced by Pediococcus acidilactici. J Appl Bacteriol 74:67–77

    Article  CAS  PubMed  Google Scholar 

  26. Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  27. Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  28. Pingitore EV, Salvucci E, Sesma F, Nader-Macias ME (2007) Communicating current research and educational topics and trends in applied microbiology. In: Méndezvilas A (ed) Different strategies for purification of antimicrobial peptides from lactic acid bacteria (LAB). Formatex, Spain, pp 557–568

    Google Scholar 

  29. Ivanova I, Kabadjova P, Pantev A, Danova S, Dousset X (2000) Detection, purification and partial characterization of a novel bacteriocin substance produced by Lactococcus lactis subsp. lactis B14 isolated from boza-Bulgarian traditional cereal beverage. Biocatal Fundam Appl 41(6):47–53

    Google Scholar 

  30. Cintas LM, Casaus P, Havarstein LS, Hernandez PE, Nes I (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63(1):4321–4330

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Mantovani HC, Hu H, Worobo RW, Russell JB (2002) Bovicin HC5, a bacteriocin from Streptococcus bovis HC5. Microbiology 148:3347–3352

    CAS  PubMed  Google Scholar 

  32. Maldonado A, Ruiz-Barba JL, Jimenez-Diaz R (2003) Purification and genetic characterization of plantaricin NC8, a novel coculture-inducible two-peptide bacteriocin from Lactobacillus plantarum NC8. Appl Environ Microbiol 69(1):383–389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Ferchichi M, Frere J, Mabrouk K, Manai M (2001) Lactococcin MMFII, a novel class IIa bacteriocin produced by Lactococcus lactis MMFII, isolated from a Tunisian dairy product. FEMS Microbiol Lett 205:49–55

    Article  CAS  PubMed  Google Scholar 

  34. Pinto AL, Fernandes M, Pinto C, Albano H, Castilho F, Teixeira F, Gibbs PA (2009) Characterization of anti-Listeria bacteriocins isolated from shellfish: Potential antimicrobials to control non-fermented seafood. Int J Food Microbiol 129:50–58

    Article  CAS  PubMed  Google Scholar 

  35. Gonzalez CF, Kunka BS (1987) Plasmid-associated bacteriocin production and sucrose fermentation in Pediococcus acidilactici. Appl Environ Microbiol 53:2534–2538

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Stein T, Borchert S, Conrad B, Feesche J, Hofemeister B, Hofemeister J, Entian KD (2002) Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3. J Bacteriol 184(6):1703–1711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Canas B, Fereer DL, Fernandez AR, Camafeita E, Calvo E (2006) Mass spectrometry technologies for proteomics. Brief Funct Genomic Proteomics 4(4):295–320

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank to Biotechnology Institution at the University of Ankara for enabling them to carry out proteomic studies in Central Laboratory. This study is based on a part of the Ph.D thesis of Evrim GUNES ALTUNTAS, submitted to Science Institution at the University of Ankara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evrim Güneş Altuntaş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altuntaş, E.G., Ayhan, K., Peker, S. et al. Purification and mass spectrometry based characterization of a pediocin produced by Pediococcus acidilactici 13. Mol Biol Rep 41, 6879–6885 (2014). https://doi.org/10.1007/s11033-014-3573-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3573-z

Keywords

Navigation