Skip to main content

Advertisement

Log in

Toll-like receptor of mud crab, Scylla serrata: molecular characterisation, ontogeny and functional expression analysis following ligand exposure, and bacterial and viral infections

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Toll-like receptors are sentinels of innate immune system, which recognise pathogen-associated molecular patterns, and subsequently activate production of antimicrobial peptides to contain the infection. In the present study, we cloned and characterised a Toll gene from Scylla serrata (SsToll) encoding 1005 amino acids with typical Toll-like receptor domain topology. Phylogenetic analysis revealed that it belongs to insect-type invertebrate Toll family showing 100 % identity with Scylla paramamosain (SpToll). The expression pattern of mRNA in different tissues indicated that SsToll is constitutively expressed in all the tissues examined, with varying expression levels. The expression was also detected in all the life-stages (egg, zoea stages 1–5, megalopa and crab instar) with the highest level observed in zoea 2. In-vitro studies using crab haemocyte culture demonstrated that SsToll transcripts are distinctly modulated in response to ligands such as peptidoglycan and lipopolysaccharide at all time-points. A significant change in SsToll expression was also noticed in haemocytes exposed to poly I:C (3–9 h). On the contrary, the transcription level of SsToll in response to white spot syndrome virus (WSSV) challenge was noticeably different. The change in expression in vitro was not significant at early time-points until 3 h; the transcripts showed a significant up-regulation commencing from 6 h, but not beyond 12 h. However, in vivo expression was unaffected at early time-points of WSSV challenge (until 12 h) and a gradual up-regulation was detected at 24 h. In-vivo challenge with Vibrio parahaemolyticus resulted in delayed up-regulation of the gene. The results obtained in the present study suggest that SsToll might be involved in the innate immunity of mud crab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Magnadottir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20:137–151

    Article  CAS  PubMed  Google Scholar 

  2. Aoki T, Takano T, Santos MD, Kondo H, Hirono I (2008) Molecular innate immunity in Teleost fish: review and future perspectives. 5th World Fish Congress 263–276

  3. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  CAS  PubMed  Google Scholar 

  4. Medzhitov R, Janeway CA Jr (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91:295–298

    Article  CAS  PubMed  Google Scholar 

  5. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10:241–247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Chen X, Zhang M, Zhu X, Deng Q, Liu H, Larmonier N et al (2009) Engagement of Toll-like receptor 2 on CD4(+) T cells facilitates local immune responses in patients with tuberculous pleurisy. J Infect Dis 200:399–408

    Article  CAS  PubMed  Google Scholar 

  7. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  8. Rebl A, Goldammer T, Seyfert H (2010) Toll-like receptor signalling in bony fish. Vet Immunol Immunopath 134(3–4):139–150

    Article  CAS  Google Scholar 

  9. Arts JA, Cornelissen FH, Cijsouw T, Hermsen T, Savelkoul HF, Stet RJ (2007) Molecular cloning and expression of a Toll receptor in the giant tiger shrimp, Penaeus monodon. Fish Shellfish Immunol 23:504–513

    Article  CAS  PubMed  Google Scholar 

  10. Mekata T, Kono T, Yoshida T, Sakai M, Itami T (2008) Identification of cDNA encoding Toll receptor, MjToll gene from kuruma shrimp, Marsupenaeus japonicus. Fish Shellfish Immunol 24:122–133

    Article  CAS  PubMed  Google Scholar 

  11. Yang LS, Yin ZX, Liao JX, Huang XD, Guo CJ, Weng SP et al (2007) A Toll receptor in shrimp. Mol Immunol 44:1999–2008

    Article  CAS  PubMed  Google Scholar 

  12. Yang C, Zhang J, Li F, Ma H, Zhang Q, Priya TAJ et al (2008) A Toll receptor from Chinese shrimp Fenneropenaeus chinensis is responsive to Vibrio anguillarum infection. Fish Shellfish Immunol 24:564–574

    Article  CAS  PubMed  Google Scholar 

  13. Wang PH, Liang JP, Gu ZH, Wan DH, Weng SP, Yu XQ et al (2012) Molecular cloning, characterization and expression analysis of two novel Tolls (LvToll2 and LvToll3) and three putative Spatzle-like Toll ligands (LvSpz1–3) from Litopenaeus vannamei. Dev Comp Immunol 36:359–371

    Article  CAS  PubMed  Google Scholar 

  14. Lin Z, Qiao J, Zhang Y, Guo L, Huang H, Yan F, Li Y, Wang X (2012) Cloning and characterisation of the SpToll gene from green mud crab, Scylla paramamosain. Dev Comp Immunol 37:164–175

    Article  CAS  PubMed  Google Scholar 

  15. Yu AQ, Jin XK, Guo XN, Li S, Wu MH, Li WW, Wang Q (2013) Two novel Toll genes (EsToll1 and EsToll2) from Eriocheir sinensis are differentially induced by lipopolysaccharide, peptidoglycan and zymosan. Fish Shellfish Immunol 35:1282–1292

    Article  CAS  PubMed  Google Scholar 

  16. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (2003) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983

    Article  Google Scholar 

  17. Rutschmann S, Kilinc A, Ferrandon D (2002) Cutting edge: the Toll pathway is required for resistance to Gram-positive bacterial infections in Drosophila. J Immunol 168:1542–1546

    Article  CAS  PubMed  Google Scholar 

  18. De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B (2002) The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J 21:2568–2579

    Article  PubMed Central  PubMed  Google Scholar 

  19. Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743

    Article  CAS  PubMed  Google Scholar 

  20. Valanne S, Wang JH, Ramet M (2011) The Drosophila Toll signalling pathway. J Immunol 186:649–656

    Article  CAS  PubMed  Google Scholar 

  21. Zambon RA, Nandakumar M, Vakharia VN, Wu LP (2005) The Toll pathway is important for an antiviral response in Drosophila. Proc Natl Acad Sci USA 102:7257–7262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kathirvel M (1993) Mud crab. Handbook on aqua farming of shrimps, lobsters and crabs. MPEDA Publication, Cochin, p 72

    Google Scholar 

  23. Kumar B, Deepika A, Makesh M, Purushothaman CS, Rajendran KV (2012) Production and characterization of monoclonal antibodies to the hemocytes of mud crab, Scylla serrata. J Invertebr Pathol 111(1):86–89

    Article  CAS  PubMed  Google Scholar 

  24. Rajendran KV, Vijayan KK, Santiago TC, Krol RM (1999) Experimental host range and histopathology of white spot syndrome virus (WSSV) infection in shrimp, prawns, crabs and lobsters from India. J Fish Dis 22:183–191

    Article  Google Scholar 

  25. Deepika A, Makesh M, Rajendran KV (2014) Development of primary cell cultures from mud crab, Scylla serrata and their potential as an in vitro model for replication of white spot syndrome virus. Vitro Cell Dev Biol Anim 50(5):406–416

    Article  CAS  Google Scholar 

  26. Pfaffl MW (2001) A new mathematical model for relative quantification in realtime RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  27. Zhang Y, Söderhäll I, Söderhäll K, Jiravanichpaisal P (2010) Expression of immune-related genes in one phase of embryonic development of freshwater crayfish, Pacifastacus leniusculus. Fish Shellfish Immunol 28:649–653

    Article  CAS  PubMed  Google Scholar 

  28. Li F, Xiang J (2013) Signaling pathways regulating innate immune responses in shrimp. Fish Shellfish Immunol 34:973–980

    Article  CAS  PubMed  Google Scholar 

  29. Bourgeois LB, Bosworth BG, Peterson BC (2008) Differences in mortality, growth, lysozyme, and Toll-like receptor gene expression among genetic groups of catfish exposed to virulent Edwardsiella ictaluri. Fish Shellfish Immunol 24:82–89

    Article  Google Scholar 

  30. Muthukuru M, Jotwani R, Cutler CW (2005) Oral mucosal endotoxin tolerance induction in chronic periodontitis. Infect Immun 73:687–694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ortega-Cava CF, Ishihara S, Rumi MAK, Aziz MM, Kazumori H, Yuki T et al (2006) Epithelial toll-like receptor 5 is constitutively localized in the mouse cecum and exhibits distinctive down-regulation during experimental colitis. Clin Vacc Immunol 13:132–138

    Article  CAS  Google Scholar 

  32. Yao C, Kong P, Wang Z, PJi P, Cai M, Liu X, Han X (2008) Cloning and expression analysis of two alternative splicing toll-like receptor 9 isoforms A and B in large yellow croaker, Pseudosciaena crocea. Fish Shellfish Immunol 25:648–656

    Article  CAS  PubMed  Google Scholar 

  33. Basu M, Swain B, Maiti NK, Routray P, Samanta M (2012) Inductive expression of toll-like receptor 5 (TLR5) and associated downstream signaling molecules following ligand exposure and bacterial infection in the Indian major carp, mrigal (Cirrhinus mrigala). Fish Shellfish Immunol 32:121–131

    Article  CAS  PubMed  Google Scholar 

  34. Samanta M, Swain B, Basu M, Panda P, Mohapatra GB, Sahoo BR, Maiti NK (2012) Molecular characterization of toll-like receptor 2 (TLR2), analysis of its inductive expression and associated down-stream signaling molecules following ligands exposure and bacterial infection in the Indian major carp, rohu (Labeo rohita). Fish Shellfish Immunol 32:411–425

    Article  CAS  PubMed  Google Scholar 

  35. Wang PH, Yang LS, Gu ZH, Weng SP, Yu XQ, He JG (2013) Nucleic acid-induced antiviral immunity in shrimp. Antivral Res 99:270–280

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. W.S. Lakra, Director, CIFE, for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Rajendran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidya, R., Paria, A., Deepika, A. et al. Toll-like receptor of mud crab, Scylla serrata: molecular characterisation, ontogeny and functional expression analysis following ligand exposure, and bacterial and viral infections. Mol Biol Rep 41, 6865–6877 (2014). https://doi.org/10.1007/s11033-014-3572-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3572-0

Keywords

Navigation