Skip to main content
Log in

Testosterone alters testis function through regulation of piRNA expression in rats

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Piwi-interacting RNAs (piRNAs) play a role in gene silencing of retrotransposons, maintenance of spermatogenesis and maturation in germlines. The piRNA and PIWI protein are essential for fertility. To reveal piRNA function associated with testosterone, we investigated the expression of piRNA and piwi protein in normal male rats and testosterone-treated rats. Normal Sprague–Dawley (SD) rats were randomly selected and sacrificed at neonatal to late adolescence stage stages (2, 9, 16, 20, 24, 28, 35, and 42 days, n = 6 each). Additional SD rats were divided into four groups: group 1 received weekly injections of testosterone enanthate (8 mg/100 g) during 1–3 weeks; group 2 during 3–5 weeks; group 3 during 1–5 weeks; and group 4 was the control (n = 20 each). These animals were sacrificed at an age of 60 days. We investigated piRNA, PIWI, and Ago3 protein levels using real-time PCR, Western blot, and immunohistochemistry in each group. In normal rats, PIWI protein and piRNA were expressed at P24. The expression of PIWI and piRNA gradually increased from adolescence to adulthood on Western blot, real-time PCR and immunohistochemistry. In testosterone-treated rats, the expression of PIWI protein was analyzed by Western blot and shown to be significantly increased in group 1 (neonatal to juvenile injection). In real-time PCR, the expression of piRNA after testosterone treatment was increased in all groups (G1 166.8 ± 2.7; G2 113.3 ± 4.6; G3 70.2 ± 1.5 vs. control, 32.87 ± 2.0, all p < 0.001). The expression of testosterone in adolescence induces the development of male genitourinary organs and spermatogenesis. At the same time, the sexual hormones may activate the piRNA and PIWI protein. Our data demonstrate that patterns of piRNA and PIWI expression are similar to the secretion pattern of testosterone, and that piRNA expression was increased after testosterone treatment. Therefore, testosterone may affect testis function through the regulation of piRNA expression in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  2. Li C, Vagin VV, Lee S et al (2009) Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 137:509–521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Nagao A, Mituyama T, Huang H, Chen D, Siomi MC, Siomi H (2010) Biogenesis pathways of piRNAs loaded onto AGO3 in the Drosophila testis. RNA 16:2503–2515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kim VN (2006) Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes Dev 20:1993–1997

    Article  CAS  PubMed  Google Scholar 

  5. Lin H (2007) piRNAs in the germ line. Science 316:397

    Article  CAS  PubMed  Google Scholar 

  6. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  CAS  PubMed  Google Scholar 

  7. Miyoshi K, Miyoshi T, Hartig JV, Siomi H, Siomi MC (2010) Molecular mechanisms that funnel RNA precursors into endogenous small-interfering RNA and microRNA biogenesis pathways in Drosophila. RNA 16:506–515

    Article  PubMed Central  PubMed  Google Scholar 

  8. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Mourier T (2011) Retrotransposon-centered analysis of piRNA targeting shows a shift from active to passive retrotransposon transcription in developing mouse testes. BMC Genomics 12:440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313:320–324

    Article  CAS  PubMed  Google Scholar 

  11. Houwing S, Kamminga LM, Berezikov E et al (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129:69–82

    Article  CAS  PubMed  Google Scholar 

  12. Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316:744–747

    Article  CAS  PubMed  Google Scholar 

  13. Carmell MA, Girard A, van de Kant HJG, Bourc’his D, Bestor TH, de Rooij DG, Hannon GJ (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12:503–514

    Article  CAS  PubMed  Google Scholar 

  14. Handler D, Olivieri D, Novatchkova M, Gruber FS, Meixner K, Mechtler K, Stark A, Sachidanandam R, Brennecke J (2011) A systematic analysis of Drosophila TUDOR domain-containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors. EMBO J 30:3977–3993

  15. Cox DN, Chao A, Lin H (2000) piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development 127:503–514

    CAS  PubMed  Google Scholar 

  16. Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H (1998) A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 12:3715–3727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Klattenhoff C, Theurkauf W (2008) Biogenesis and germline functions of piRNAs. Development 135:3–9

    Article  CAS  PubMed  Google Scholar 

  18. Lau NC, Robine N, Martin R, Chung WJ, Niki Y, Berezikov E, Lai EC (2009) Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line. Genome Res 19:1776–1785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Shalet SM (2009) Normal testicular function and spermatogenesis. Pediatr Blood Cancer 53:285–288

    Article  PubMed  Google Scholar 

  20. Sengupta P (2013) The laboratory rat: relating its age with human’s. Int J Prev Med 4:624–630

    PubMed Central  PubMed  Google Scholar 

  21. Tang F, Hayashi K, Kaneda M, Lao K, Surani MA (2008) A sensitive multiplex assay for piRNA expression. Biochem Biophys Res Commun 369:1190–1194

    Article  CAS  PubMed  Google Scholar 

  22. Lee EJ, Banerjee S, Zhou H, Jammalamadaka A, Arcila M, Manjunath BS, Kosik KS (2011) Identification of piRNAs in the central nervous system. RNA 17:1090–1099

  23. Saito K, Inagaki S, Mituyama T, Kawamura Y, Ono Y, Sakota E, Kotani H, Asai K, Siomi H, Siomi MC (2009) A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature 461:1296–1299

    Article  CAS  PubMed  Google Scholar 

  24. Beyret E, Lin H (2011) Pinpointing the expression of piRNAs and function of the PIWI protein subfamily during spermatogenesis in the mouse. Dev Biol 355:215–226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Deng W, Lin H (2002) miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2:819–830

    Article  CAS  PubMed  Google Scholar 

  26. Kirino Y, Kim N, de Planell-Saguer M, Khandros E, Chiorean S, Klein PS, Rigoutsos I, Jongens TA, Mourelatos Z (2009) Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat Cell Biol 11:652–658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC (2007) A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315:1587–1590

    Article  CAS  PubMed  Google Scholar 

  28. Gaidano G, Berta L, Rovero E, Valenzano C, Rosatti P (1980) Dynamics of the binding capacity of plasma sex hormone binding globulin (SHBG) for testosterone and dihydrotestosterone during puberty. Clin Chim Acta 100:91–97

    Article  CAS  PubMed  Google Scholar 

  29. Purves-Tyson TD, Handelsman DJ, Double KL, Owens SJ, Bustamante S, Weickert CS (2012) Testosterone regulation of sex steroid-related mRNAs and dopamine-related mRNAs in adolescent male rat substantia nigra. BMC Neurosci 13:95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Lee H, Jin MH, Kang HJ, Hong CH, Bang WJ, Park KK, Han SW (2010) Timing of prepubertal androgen administration may have different effects on future fertility as well as penile size in normal male rats. Urology 75:979–984

    Article  PubMed  Google Scholar 

  31. Dunkel L, Taskinen S, Hovatta O, Tilly JL, Wikstrom S (1997) Germ cell apoptosis after treatment of cryptorchidism with human chorionic gonadotropin is associated with impaired reproductive function in the adult. J Clin Invest 100:2341–2346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Won Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H.J., Moon, M.J., Lee, H.Y. et al. Testosterone alters testis function through regulation of piRNA expression in rats. Mol Biol Rep 41, 6729–6735 (2014). https://doi.org/10.1007/s11033-014-3558-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3558-y

Keywords

Navigation