Skip to main content
Log in

Apelin/APJ system: a promising therapy target for hypertension

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Apelin is a recently described endogenous peptide and its receptor APJ, is a member of the G protein-coupled receptors family. Apelin and APJ are widely distributed in central and peripheral tissues exert important biological effects on cardiovascular system. Recent studies have suggested that apelin/APJ system involves in decreasing the blood pressure and have a close relationship with hypertension, presumably, pathophysiology of hypertension as well. Such as, apelin/APJ system may be concerned in hyperfunction of the sympathetic nervous system, renin–angiotensin–aldosterone system, endothelial injury, excessive endothelin, sodium retention, vascular remodeling, insulin resistance elicit hypertension, as well as in hypertension-induced organ damaged. Meanwhile, on the ground of the variation of apelin level in hypertension therapeutic process and combining with the recently researches on APJ agonist and antagonist, we could infer that apelin/APJ system would be a promising therapeutic target for hypertension and other cardiovascular disease in the future. However, the role of apelin on these pathogenic conditions was not consistent, consequently, the contradictory role of apelin on these pathogenesis of hypertension would be discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. O’Dowd BF, Heiber M, Chan A, Heng HH, Tsui LC, Kennedy JL, Shi X, Petronis A, George SR, Nguyen T (1993) A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene 136(1–2):355–360

    Article  PubMed  Google Scholar 

  2. Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C, Kurokawa T, Onda H, Fujino M (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251(2):471–476

    Article  CAS  PubMed  Google Scholar 

  3. Kawamata Y, Habata Y, Fukusumi S, Hosoya M, Fujii R, Hinuma S, Nishizawa N, Kitada C, Onda H, Nishimura O, Fujino M (2001) Molecular properties of apelin: tissue distribution and receptor binding. Biochim Biophys Acta 1538(2–3):162–171

    Article  CAS  PubMed  Google Scholar 

  4. Hosoya M, Kawamata Y, Fukusumi S, Fujii R, Habata Y, Hinuma S, Kitada C, Honda S, Kurokawa T, Onda H, Nishimura O, Fujino M (2000) Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J Biol Chem 275(28):21061–21067

    Article  CAS  PubMed  Google Scholar 

  5. Sonmez A, Celebi G, Erdem G, Tapan S, Genc H, Tasci I, Ercin CN, Dogru T, Kilic S, Uckaya G, Yilmaz MI, Erbil MK, Kutlu M (2010) Plasma apelin and ADMA Levels in patients with essential hypertension. Clin Exp Hypertens 32(3):179–183

    Article  CAS  PubMed  Google Scholar 

  6. Pan CS, Qi YF, Tang CS (2005) Apelin and its biological effects. Sheng Li Ke Xue Jin Zhan [Prog Physiol] 36(3):223–226

    CAS  Google Scholar 

  7. Ishida J, Hashimoto T, Hashimoto Y, Nishiwaki S, Iguchi T, Harada S, Sugaya T, Matsuzaki H, Yamamoto R, Shiota N, Okunishi H, Kihara M, Umemura S, Sugiyama F, Yagami K, Kasuya Y, Mochizuki N, Fukamizu A (2004) Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J Biol Chem 279(25):26274–26279

    Article  CAS  PubMed  Google Scholar 

  8. De Falco M, De Luca L, Onori N, Cavallotti I, Artigiano F, Esposito V, De Luca B, Laforgia V, Groeger AM, De Luca A (2002) Apelin expression in normal human tissues. Vivo 16(5):333–336

    Google Scholar 

  9. Shin K, Pandey A, Liu XQ, Anini Y, Rainey JK (2013) Preferential apelin-13 production by the proprotein convertase PCSK3 is implicated in obesity. FEBS Open Bio 3:328–333. doi:10.1016/j.fob.2013.08.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. O’Carroll AM, Selby TL, Palkovits M, Lolait SJ (2000) Distribution of mRNA encoding B78/apj, the rat homologue of the human APJ receptor, and its endogenous ligand apelin in brain and peripheral tissues. Biochim Biophys Acta 1492(1):72–80

    Article  PubMed  Google Scholar 

  11. Kleinz MJ, Davenport AP (2004) Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells. Regul Pept 118(3):119–125

    Article  CAS  PubMed  Google Scholar 

  12. Yang L, Chen LX (2011) Regulatory function of apelin/APJ system on multiple systems. Int J Pathol Clin Med 31(1):42–48

    Google Scholar 

  13. Zhu P, Huang F, Lin F, Yuan Y, Chen F, Li Q (2013) Plasma apelin levels, blood pressure and cardiovascular risk factors in a coastal Chinese population. Ann Med 45(7):494–498

    Article  CAS  PubMed  Google Scholar 

  14. Papadopoulos DP, Mourouzis I, Faselis C, Perrea D, Makris T, Tsioufis C, Papademetriou V (2013) Masked hypertension and atherogenesis: the impact of apelin and relaxin plasma levels. J Clin Hypertens (Greenwich) 15(5):333–336

    Article  CAS  Google Scholar 

  15. Tatemoto K, Takayama K, Zou MX, Kumaki I, Zhang W, Kumano K, Fujimiya M (2001) The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept 99(2–3):87–92

    Article  CAS  PubMed  Google Scholar 

  16. Jia YX, Lu ZF, Zhang J, Pan CS, Yang JH, Zhao J, Yu F, Duan XH, Tang CS, Qi YF (2007) Apelin activates l-arginine/nitric oxide synthase/nitric oxide pathway in rat aortas. Peptides 28(10):2023–2029

    Article  CAS  PubMed  Google Scholar 

  17. Sato T, Suzuki T, Watanabe H, Kadowaki A, Fukamizu A, Liu PP, Kimura A, Ito H, Penninger JM, Imai Y, Kuba K (2013) Apelin is a positive regulator of ACE2 in failing hearts. J Clin Investig 123(12):5203–5211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Nagano K, Ishida J, Unno M, Matsukura T, Fukamizu A (2013) Apelin elevates blood pressure in ICR mice with LNAMEinduced endothelial dysfunction. Mol Med Rep 7(5):1371–1375

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Han X, Zhang DL, Yin DX, Zhang QD, Liu WH (2013) Apelin-13 deteriorates hypertension in rats after damage of the vascular endothelium by ADMA. Can J Physiol Pharmacol 91(9):708–714. doi:10.1139/cjpp-2013-0046

    Article  CAS  PubMed  Google Scholar 

  20. Liu CH, Li X, Chen F, Pan WN, Feng F, Qin XP, Li LF, Su T, Chen LX (2009) ERK1/2 mediated the vasodilatation of apelin-13 on vascular rings of spontaneously hypertensive rat in vitro. Prog Biochem Biophys 36(12):1578–1588

    CAS  Google Scholar 

  21. Modgil A, Guo L, O’Rourke ST, Sun C (2013) Apelin-13 inhibits large-conductance Ca(2+)-activated K(+) channels in cerebral artery smooth muscle cells via a PI3-kinase dependent mechanism. PLoS One 8(12):e83051

    Article  PubMed Central  PubMed  Google Scholar 

  22. Zhang Q, Yao F, Raizada MK, O’Rourke ST, Sun C (2009) Apelin gene transfer into the rostral ventrolateral medulla induces chronic blood pressure elevation in normotensive rats. Circ Res 104(12):1421–1428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Davern PJ, Chowdhury S, Jackson KL, Nguyen-Huu TP, Head GA (2013) GABAA receptor dysfunction contributes to high blood pressure and exaggerated response to stress in Schlager genetically hypertensive mice. J Hypertens 32(2):352–362. doi:10.1097/HJH.0000000000000015

  24. Urban D, Ewen S, Ukena C, Linz D, Bohm M, Mahfoud F (2013) Treating resistant hypertension: role of renal denervation. Integr Blood Press Control 6:119–128

    PubMed Central  PubMed  Google Scholar 

  25. Hendel MD, Collister JP (2006) Renal denervation attenuates long-term hypertensive effects of Angiotensin ii in the rat. Clin Exp Pharmacol Physiol 33:1225–1230. doi:10.1111/j.1440-1681.2006.04514.x

    Article  CAS  PubMed  Google Scholar 

  26. Colombari E, Sato MA, Cravo SL, Bergamaschi CT, Campos RR Jr, Lopes OU (2001) Role of the medulla oblongata in hypertension. Hypertension 38:549–554

    Article  CAS  PubMed  Google Scholar 

  27. Seyedabadi M, Goodchild AK, Pilowsky PM (2002) Site-specific effects of apelin-13 in the rat medulla oblongata on arterial pressure and respiration. Auton Neurosci 101(1–2):32–38

    Article  CAS  PubMed  Google Scholar 

  28. Zhang CR, Xia CM, Jiang MY, Zhu MX, Zhu JM, Du DS, Liu M, Wang J, Zhu DN (2013) Repeated electroacupuncture attenuating of apelin expression and function in the rostral ventrolateral medulla in stress-induced hypertensive rats. Brain Res Bull 97:53–62

    Article  CAS  PubMed  Google Scholar 

  29. Gomes RA, Teodoro L, Lopes IC, Bersanetti PA, Carmona AK, Hial V (2008) Angiotensin-converting enzyme in pericardial fluid: comparative study with serum activity. Arq Bras Cardiol 91(3):156–161, 172–178

  30. Orlov SN, Mongin AA (2007) Salt-sensing mechanisms in blood pressure regulation and hypertension. Am J Physiol Heart Circ Physiol 293(4):H2039–H2053

    Article  CAS  PubMed  Google Scholar 

  31. Carlson SH, Wyss JM (2008) Neurohormonal regulation of the sympathetic nervous system: new insights into central mechanisms of action. Curr Hypertens Rep 10:233–240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hirooka Y, Kishi T, Sakai K, Takeshita A, Sunagawa K (2011) Imbalance of central nitric oxide and reactive oxygen species in the regulation of sympathetic activity and neural mechanisms of hypertension. Am J Physiol Regul Integr Comp Physiol 300:R818–R826. doi:10.1152/ajpregu.00426.2010

    Article  CAS  PubMed  Google Scholar 

  33. Liao TD, Yang XP, Liu YH, Shesely EG, Cavasin MA, Kuziel WA, Pagano PJ, Carretero OA (2008) Role of inflammation in the development of renal damage and dysfunction in angiotensin II-induced hypertension. Hypertension 52(2):256–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Hartono SP, Knudsen BE, Zubair AS, Nath KA, Textor SJ, Lerman LO, Grande JP (2013) Redox signaling is an early event in the pathogenesis of renovascular hypertension. Int J Mol Sci 14(9):18640–18656

    Article  PubMed Central  PubMed  Google Scholar 

  35. Wang W, Bodiga S, Das SK, Lo J, Patel V, Oudit GY (2012) Role of ACE2 in diastolic and systolic heart failure. Heart Fail Rev 17(4–5):683–691

    Article  CAS  PubMed  Google Scholar 

  36. Chun HJ, Ali ZA, Kojima Y, Kundu RK, Sheikh AY, Agrawal R, Zheng L, Leeper NJ, Pearl NE, Patterson AJ, Anderson JP, Tsao PS, Lenardo MJ, Ashley EA, Quertermous T (2008) Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis. J Clin Investig 118(10):3343–3354

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Fukushima H, Kobayashi N, Takeshima H, Koguchi W, Ishimitsu T (2010) Effects of olmesartan on apelin/APJ and Akt/endothelial nitric oxide synthase pathway in Dahl rats with end-stage heart failure. J Cardiovasc Pharmacol 55(1):83–88

    Article  CAS  PubMed  Google Scholar 

  38. Zhong JC, Huang DY, Liu GF, Jin HY, Yang YM, Li YF, Song XH, Du K (2005) Effects of all-trans retinoic acid on orphan receptor APJ signaling in spontaneously hypertensive rats. Cardiovasc Res 65(3):743–750

    Article  CAS  PubMed  Google Scholar 

  39. Chaney E, Shaw A (2010) Pathophysiology of fluid retention in heart failure. Contrib Nephrol 164:46–53

    Article  PubMed  Google Scholar 

  40. Niebylski A, Boccolini A, Bensi N, Binotti S, Hansen C, Yaciuk R, Gauna H (2012) Neuroendocrine changes and natriuresis in response to social stress in rats. Stress Health 28(3):179–185

    Article  CAS  PubMed  Google Scholar 

  41. Jaitovich A, Bertorello AM (2010) Salt, Na+, K+-ATPase and hypertension. Life Sci 86(3–4):73–78

    Article  CAS  PubMed  Google Scholar 

  42. Akcilar R, Turgut S, Caner V, Akcilar A, Ayada C, Elmas L, Ozcan TO (2013) Apelin effects on blood pressure and RAS in DOCA-salt-induced hypertensive rats. Clin Exp Hypertens 35(7):550–557

    Article  CAS  PubMed  Google Scholar 

  43. Azizi M, Iturrioz X, Blanchard A, Peyrard S, De Mota N, Chartrel N, Vaudry H, Corvol P, Llorens-Cortes C (2008) Reciprocal regulation of plasma apelin and vasopressin by osmotic stimuli. J Am Soc Nephrol (JASN) 19(5):1015–1024

    Article  CAS  Google Scholar 

  44. Llorens-Cortes C, Kordon C (2008) Jacques Benoit lecture: the neuroendocrine view of the angiotensin and apelin systems. J Neuroendocrinol 20(3):279–289

    Article  CAS  PubMed  Google Scholar 

  45. Taheri S, Murphy K, Cohen M, Sujkovic E, Kennedy A, Dhillo W, Dakin C, Sajedi A, Ghatei M, Bloom S (2002) The effects of centrally administered apelin-13 on food intake, water intake and pituitary hormone release in rats. Biochem Biophys Res Commun 291:1208–1212. doi:10.1006/bbrc.2002.6575

    Article  CAS  PubMed  Google Scholar 

  46. Bech JN, Nielsen EH, Pedersen RS, Svendsen KB, Pedersen EB (2007) Enhanced sodium retention after acute nitric oxide blockade in mildly sodium loaded patients with essential hypertension. Am J Hypertens 20(3):287–295

    Article  CAS  PubMed  Google Scholar 

  47. Johnson FK, Johnson RA, Peyton KJ, Durante W (2005) Arginase inhibition restores arteriolar endothelial function in Dahl rats with salt-induced hypertension. Am J Physiol Regul Integr Comp Physiol 288(4):R1057–R1062

    Article  CAS  PubMed  Google Scholar 

  48. Sasaki Y, Noguchi T, Yamamoto E, Giddings JC, Ikeda K, Yamamoto J, Yamori Y (2004) Effects of voluntary exercise on cerebral thrombosis and endothelial function in spontaneously hypertensive rats (SHRSP/Izm). Clin Exp Pharmacol Physiol 31(Suppl 2):S47–S48

    Article  PubMed  Google Scholar 

  49. Sainani GS, Maru VG (2004) Role of endothelial cell dysfunction in essential hypertension. J Assoc Physicians India 52:966–969

    CAS  PubMed  Google Scholar 

  50. Chen X, Lin YN, Fang DH, Zhang HQ, Huang WJ (2013) Effect of crucumin on vascular endothelial function in atherosclerotic rabbits. China J Chin Mater Medica 38(19):3343–3347

    CAS  Google Scholar 

  51. Li X, Zhang X, Li F, Chen L, Li L, Qin X, Gao J, Su T, Zeng Y, Liao D (2010) 14-3-3 mediates apelin-13-induced enhancement of adhesion of monocytes to human umbilical vein endothelial cells. Acta Biochim Biophys Sin 42(6):403–409

    Article  CAS  PubMed  Google Scholar 

  52. Lu Y, Zhu X, Liang GX, Cui RR, Liu Y, Wu SS, Liang QH, Liu GY, Jiang Y, Liao XB, Xie H, Zhou HD, Wu XP, Yuan LQ, Liao EY (2012) Apelin–APJ induces ICAM-1, VCAM-1 and MCP-1 expression via NF-kappaB/JNK signal pathway in human umbilical vein endothelial cells. Amino Acids 43(5):2125–2136. doi:10.1007/s00726-012-1298-7

    Article  CAS  PubMed  Google Scholar 

  53. Malyszko J, Malyszko JS, Pawlak K, Mysliwiec M (2008) Visfatin and apelin, new adipocytokines, and their relation to endothelial function in patients with chronic renal failure. Adv Med Sci 53(1):32–36

    Article  CAS  PubMed  Google Scholar 

  54. Januszewicz A, Lapinski M, Symonides B, Dabrowska E, Kuch-Wocial A, Trzepla E, Ignatowska-Switalska H, Wocial B, Chodakowska J, Januszewicz W (1994) Elevated endothelin-1 plasma concentration in patients with essential hypertension. J Cardiovasc Risk 1(1):81–85

    Article  CAS  PubMed  Google Scholar 

  55. Gendron G, Gobeil F Jr, Morin J, D’Orleans-Juste P, Regoli D (2004) Contractile responses of aortae from WKY and SHR to vasoconstrictors. Clin Exp Hypertens 26(6):511–523

    Article  CAS  PubMed  Google Scholar 

  56. Yamamoto T, Kimura T, Ota K, Shoji M, Inoue M, Sato K, Ohta M, Yoshinaga K (1991) Central effects of endothelin-1 on vasopressin and atrial natriuretic peptide release and cardiovascular and renal function in conscious rats. J Cardiovasc Pharmacol 17 (Suppl 7):S316–318

  57. Strait KA, Stricklett PK, Kohan DE (2007) Altered collecting duct adenylyl cyclase content in collecting duct endothelin-1 knockout mice. BMC Nephrol 8:8. doi:10.1186/1471-2369-8-817Suppl7:S316-318

    Article  PubMed Central  PubMed  Google Scholar 

  58. Uemasu J, Munemura C, Fujihara M, Kawasaki H (1994) Inhibition of plasma endothelin-1 concentration by captopril in patients with essential hypertension. Clin Nephrol 41(3):150–152

    CAS  PubMed  Google Scholar 

  59. Vanourkova Z, Kramer HJ, Huskova Z, Cervenka L, Vaneckova I (2010) Despite similar reduction of blood pressure and renal ANG II and ET-1 levels aliskiren but not losartan normalizes albuminuria in hypertensive Ren-2 rats. Physiol Res 59(3):339–345

    CAS  PubMed  Google Scholar 

  60. Baumbach GL, Heistad DD (1989) Remodeling of cerebral arterioles in chronic hypertension. Hypertension 13(6 Pt 2):968–972

    Article  CAS  PubMed  Google Scholar 

  61. Kidoya H, Takakura N (2012) Biology of the apelin–APJ axis in vascular formation. J Biochem 152(2):125–131

    Article  CAS  PubMed  Google Scholar 

  62. Li F, Li L, Qin X, Pan W, Feng F, Chen F, Zhu B, Liao D, Tanowitz H, Albanese C, Chen L (2008) Apelin-induced vascular smooth muscle cell proliferation: the regulation of cyclin D1. Front Biosci J Virtual Libr 13:3786–3792

    Article  CAS  Google Scholar 

  63. Liu C, Su T, Li F, Li L, Qin X, Pan W, Feng F, Chen F, Liao D, Chen L (2010) PI3K/Akt signaling transduction pathway is involved in rat vascular smooth muscle cell proliferation induced by apelin-13. Acta Biochim Biophys Sin 42(6):396–402

    Article  CAS  PubMed  Google Scholar 

  64. Pan WN, Li F, Mao XH, Qin XP, Deng SX, Feng F, Chen F, Li LF, Liao DF, Chen LX (2011) 14-3-3 protein is involved in ERK1/2 signaling trasduction pathway of rat VSMCs proliferation induced by apelin. Prog Biochem Biophys 38(12):1153–1161. doi:10.3724/SP.J.1206.2011.00334

    Article  CAS  Google Scholar 

  65. Li L, Li L, Xie F, Zhang Z, Guo Y, Tang G, Lv D, Lu Q, Chen L, Li J (2013) Jagged-1/Notch3 signaling transduction pathway is involved in apelin-13-induced vascular smooth muscle cells proliferation. Acta Biochim Biophys Sin 45(10):875–881. doi:10.1093/abbs/gmt085

    Article  CAS  PubMed  Google Scholar 

  66. Liu QF, Yu HW, You L, Liu MX, Li KY, Tao GZ (2013) Apelin-13-induced proliferation and migration induced of rat vascular smooth muscle cells is mediated by the upregulation of Egr-1. Biochem Biophys Res Commun 439(2):235–240. doi:10.1016/j.bbrc.2013.08.051

    Article  CAS  PubMed  Google Scholar 

  67. Xun P, Wu Y, He Q, He K (2013) Fasting insulin concentrations and incidence of hypertension, stroke, and coronary heart disease: a meta-analysis of prospective cohort studies. Am J Clin Nutr 98(6):1543–1554. doi:10.3945/ajcn.113.065565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Takatori S, Zamami Y, Hashikawa-Hobara N, Kawasaki H (2013) Insulin resistance-induced hypertension and a role of perivascular CGRPergic nerves. Curr Protein Pept Sci 14(4):275–281

    Article  CAS  PubMed  Google Scholar 

  69. Muniyappa R, Sowers JR (2013) Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord 14(1):5–12. doi:10.1007/s11154-012-9229-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Togashi N, Maeda T, Yoshida H, Koyama M, Tanaka M, Furuhashi M, Shimamoto K, Miura T (2012) Angiotensin II receptor activation in youth triggers persistent insulin resistance and hypertension—a legacy effect? Hypertens Res 35(3):334–340. doi:10.1038/hr.2011.206

    Article  CAS  PubMed  Google Scholar 

  71. Horita S, Seki G, Yamada H, Suzuki M, Koike K, Fujita T (2011) Insulin resistance, obesity, hypertension, and renal sodium transport. Int J Hypertens 2011:391762

    Article  PubMed Central  PubMed  Google Scholar 

  72. Yue P, Jin H, Aillaud M, Deng AC, Azuma J, Asagami T, Kundu RK, Reaven GM, Quertermous T, Tsao PS (2010) Apelin is necessary for the maintenance of insulin sensitivity. Am J Physiol Endocrinol Metab 298(1):E59–E67. doi:10.1152/ajpendo.00385.2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Zhu S, Sun F, Li W, Cao Y, Wang C, Wang Y, Liang D, Zhang R, Zhang S, Wang H, Cao F (2011) Apelin stimulates glucose uptake through the PI3K/Akt pathway and improves insulin resistance in 3T3-L1 adipocytes. Mol Cell Biochem 353(1–2):305–313. doi:10.1007/s11010-011-0799-0

    Article  CAS  PubMed  Google Scholar 

  74. Duparc T, Colom A, Cani PD, Massaly N, Rastrelli S, Drougard A, Le Gonidec S, Mouledous L, Frances B, Leclercq I, Llorens-Cortes C, Pospisilik JA, Delzenne NM, Valet P, Castan-Laurell I, Knauf C (2011) Central apelin controls glucose homeostasis via a nitric oxide-dependent pathway in mice. Antioxid Redox Signal 15(6):1477–1496

    Article  CAS  PubMed  Google Scholar 

  75. Wang L, Hou L, Li H, Chen J, Kelly TN, Jaquish CE, Rao DC, Hixson JE, Hu D, Chen CS, Gu C, Chen S, Lu X, Whelton PK, He J, Lu F, Huang J, Liu DP, Gu D (2010) Genetic variants in the renin–angiotensin system and blood pressure reactions to the cold pressor test. J Hypertens 28(12):2422–2428. doi:10.1097/HJH.0b013e32833ea74e

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Yang B, Liu X, Li M, Yang Y, Na X, Wang Y (2013) Genetic association of rs1800780 (A→G) polymorphism of the eNOS gene with susceptibility to essential hypertension in a Chinese Han population. Biochem Genet. doi:10.1007/s10528-013-9628-3

    Google Scholar 

  77. Burrell LM, Risvanis J, Dean RG, Patel SK, Velkoska E, Johnston CI (2013) Age-dependent regulation of renal vasopressin V(1A) and V(2) receptors in rats with genetic hypertension: implications for the treatment of hypertension. J Am Soc Hypertens (JASH) 7(1):3–13. doi:10.1016/j.jash.2012.11.004

    Article  CAS  Google Scholar 

  78. Li WW, Niu WQ, Zhang Y, Wu S, Gao PJ, Zhu DL (2009) Family-based analysis of apelin and AGTRL1 gene polymorphisms with hypertension in Han Chinese. J Hypertens 27(6):1194–1201

    Article  CAS  PubMed  Google Scholar 

  79. Jin W, Su X, Xu M, Liu Y, Shi J, Lu L, Niu W (2012) Interactive association of five candidate polymorphisms in Apelin/APJ pathway with coronary artery disease among Chinese hypertensive patients. PLoS One 7(12):e51123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Huang J, Chen S, Lu X, Zhao Q, Rao DC, Jaquish CE, Hixson JE, Chen J, Wang L, Cao J, Li J, Li H, He J, Liu DP, Gu D (2012) Polymorphisms of ACE2 are associated with blood pressure response to cold pressor test: the GenSalt study. Am J Hypertens 25(8):937–942

    Article  CAS  PubMed  Google Scholar 

  81. Sedaghat S, Hoorn EJ, van Rooij FJ, Hofman A, Franco OH, Witteman JC, Dehghan A (2013) Serum uric acid and chronic kidney disease: the role of hypertension. PLoS One 8(11):e76827. doi:10.1371/journal.pone.0076827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Seifi B, Kadkhodaee M, Karimian SM, Zahmatkesh M, Xu J, Soleimani M (2010) Evaluation of renal oxidative stress in the development of DOCA-salt induced hypertension and its renal damage. Clin Exp Hypertens 32(2):90–97. doi:10.3109/10641960902993111

    Article  CAS  PubMed  Google Scholar 

  83. Drukteinis JS, Roman MJ, Fabsitz RR, Lee ET, Best LG, Russell M, Devereux RB (2007) Cardiac and systemic hemodynamic characteristics of hypertension and prehypertension in adolescents and young adults: the Strong Heart Study. Circulation 115(2):221–227. doi:10.1161/circulationaha.106.668921

    Article  PubMed  Google Scholar 

  84. Muller M, van der Graaf Y, Visseren FL, Mali WP, Geerlings MI (2012) Hypertension and longitudinal changes in cerebral blood flow: the SMART-MR study. Ann Neurol 71(6):825–833. doi:10.1002/ana.23554

    Article  PubMed  Google Scholar 

  85. Sagiroglu T, Torun N, Yagci M, Yalta T, Sagiroglu G, Oguz S (2012) Effects of apelin and leptin on renal functions following renal ischemia/reperfusion: an experimental study. Exp Ther Med 3:908–914. doi:10.3892/etm.2012.499

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Ceylan-Isik AF, Kandadi MR, Xu X, Hua Y, Chicco AJ, Ren J, Nair S (2013) Apelin administration ameliorates high fat diet-induced cardiac hypertrophy and contractile dysfunction. J Mol Cell Cardiol 63:4–13. doi:10.1016/j.yjmcc.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  87. Zeng H, He X, Hou X, Li L, Chen JX (2014) Apelin gene therapy increases myocardial vascular density and ameliorates diabetic cardiomyopathy via upregulation of sirtuin 3. Am J Physiol Heart Circ Physiol 306:H585–H597. doi:10.1152/ajpheart.00821.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Gu Q, Zhai L, Feng X, Chen J, Miao Z, Ren L, Qian X, Yu J, Li Y, Xu X, Liu CF (2013) Apelin-36, a potent peptide, protects against ischemic brain injury by activating the PI3K/Akt pathway. Neurochem Int 63(6):535–540. doi:10.1016/j.neuint.2013.09.017

    Article  CAS  PubMed  Google Scholar 

  89. Yang L, Su T, Lv D, Xie F, Liu W, Cao J, Sheikh IA, Qin X, Li L, Chen L (2014) ERK1/2 mediates lung adenocarcinoma cell proliferation and autophagy induced by apelin-13. Acta Biochim Biophys Sin. doi:10.1093/abbs/gmt140

    PubMed Central  Google Scholar 

  90. Xie F, Li L, Chen L (2013) Autophagy, a new target for disease treatment. Sci China Life Sci 56(9):856–860. doi:10.1007/s11427-013-4530-0

    Article  PubMed  Google Scholar 

  91. Xie F, Liu W, Chen LX (2012) The progress of autophagy involved in heart disease. Pro Biochem Biophys 39(03):224–233. doi:10.3724/SP.J.1206.2012.00088

    Article  CAS  Google Scholar 

  92. Li LF, Li LF, He L, Zhang ZD, Xie F, Guo Y, Xiao JH, Chen LX, Li J (2014) Effects of apelin-13 on rat bone marrow-derived mesenchymal stem cell proliferation through the AKT/GSK3β/cyclin D1 pathway. Int J Pept Res Ther. doi:10.1007/s10989-014-9404-1

    Google Scholar 

  93. Xiao L, Li LF, Chen LX (2013) Progress on the autophagy in vessel function and related diseases. Prog Biochem Biophys 40(01):1171–1185. doi:10.3724/SP.J.1206.2012.00623

    Google Scholar 

  94. Jin G, Yang P, Gong Y, Fan X, Tang J, Lin J (2009) Effects of puerarin on expression of apelin and its receptor of 2K1C renal hypertension rats. China J Chin Mater Med 34(24):3263–3267

    CAS  Google Scholar 

  95. Huang ZG, Bai S, Chen L, Wang JT, Ding BP (2013) Effect of puerarin combined with felodipine on mRNA and protein expression of apelin and APJ in renovascular hypertensive rat. China J Chin Mater Med 38(3):381–385

    CAS  Google Scholar 

  96. Zhang J, Ren CX, Qi YF, Lou LX, Chen L, Zhang LK, Wang X, Tang C (2006) Exercise training promotes expression of apelin and APJ of cardiovascular tissues in spontaneously hypertensive rats. Life Sci 79(12):1153–1159

    Article  CAS  PubMed  Google Scholar 

  97. Lv D, Li H, Chen L (2013) Apelin and APJ, a novel critical factor and therapeutic target for atherosclerosis. Acta Biochim Biophys Sin 45(7):527–533. doi:10.1093/abbs/gmt040

    Article  CAS  PubMed  Google Scholar 

  98. Xie F, Li LF, Chen LX (2013) Apelin/APJ receptor as myocardial cell baroreceptor induced myocardial hypertrophy formation. Prog Biochem Biophys 40(01):33–36. doi:10.3724/SP.J.1206.2012.00416

    CAS  Google Scholar 

  99. Lv D, Lu Q, Cao J, Chen L (2013) Unanticipated role of apelin: regulation of miRNA generation. Acta Biochim Biophys Sin 45(10):896–898. doi:10.1093/abbs/gmt090

    Article  CAS  PubMed  Google Scholar 

  100. Iturrioz X, Alvear-Perez R, De Mota N, Franchet C, Guillier F, Leroux V, Dabire H, Le Jouan M, Chabane H, Gerbier R, Bonnet D, Berdeaux A, Maigret B, Galzi JL, Hibert M, Llorens-Cortes C (2010) Identification and pharmacological properties of E339-3D6, the first nonpeptidic apelin receptor agonist. FASEB J 24(5):1506–1517. doi:10.1096/fj.09-140715

    Article  CAS  PubMed  Google Scholar 

  101. Macaluso NJ, Pitkin SL, Maguire JJ, Davenport AP, Glen RC (2011) Discovery of a competitive apelin receptor (APJ) antagonist. ChemMedChem 6(6):1017–1023. doi:10.1002/cmdc.201100069

    Article  CAS  PubMed  Google Scholar 

  102. Maloney PR, Khan P, Hedrick M, Gosalia P, Milewski M, Li L, Roth GP, Sergienko E, Suyama E, Sugarman E, Nguyen K, Mehta A, Vasile S, Su Y, Stonich D, Nguyen H, Zeng FY, Novo AM, Vicchiarelli M, Diwan J, Chung TD, Smith LH, Pinkerton AB (2012) Discovery of 4-oxo-6-((pyrimidin-2-ylthio)methyl)-4H-pyran-3-yl 4-nitrobenzoate (ML221) as a functional antagonist of the apelin (APJ) receptor. Bioorg Med Chem Lett 22(21):6656–6660. doi:10.1016/j.bmcl.2012.08.105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the grants from the National Natural Science Foundation of China (81270420, 30901577), the Hengyang Joint Funds of Hunan Provincial Natural Science Foundation of China (12JJ8013), Hunan Provincial Natural Science Foundation of China (14JJ3102), and the Construct Program of the Key Discipline in Hunan Province. We special appreciate Bingbing Wang (Assistant Professor, Perinatal Biology Laboratory, Division of Maternal-Fetal Medicine, Rutgers University-Robert Wood Johnson Medical School, USA) for the English language improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linxi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., He, L. & Chen, L. Apelin/APJ system: a promising therapy target for hypertension. Mol Biol Rep 41, 6691–6703 (2014). https://doi.org/10.1007/s11033-014-3552-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3552-4

Keywords

Navigation