Skip to main content

Advertisement

Log in

Progression of O6-methylguanine-DNA methyltransferase and temozolomide resistance in cancer research

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Temozolomide (TMZ) is an alkylating agent that is widely used in chemotherapy for cancer. A key mechanism of resistance to TMZ is the overexpression of O6-methylguanine-DNA methyltransferase (MGMT). MGMT specifically repairs the DNA O6-methylation damage induced by TMZ and irreversibly inactivates TMZ. Regulation of MGMT expression and research regarding the mechanism of TMZ resistance will help rationalize the clinical use of TMZ. In this review, we provide an overview of recent advances in the field, with particular emphasis on MGMT structure, function, expression regulation, and the association between MGMT and resistance to TMZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo J, Cui Q, Jiang W et al (2013) Research on DNA methylation of human osteosarcoma cell MGMT and its relationship with cell resistance to alkylating agents. Biochem Cell Biol 91:209–213

    Article  CAS  PubMed  Google Scholar 

  2. Rhee DJ, Kong DS, Kim WS et al (2005) Efficacy of temozolomide as adjuvant chemotherapy after postsurgical radiotherapy alone for glioblastomas. Clin Neurol Neurosurg 111:748–751

    Article  Google Scholar 

  3. Kaina B, Margison GP, Christmann M (2010) Targeting O6-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy. Cell Mol Life Sci 67:3663–3681

    Article  CAS  PubMed  Google Scholar 

  4. Hegi ME, Diserens A-C, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  CAS  PubMed  Google Scholar 

  5. Zhang J, Stevens MF, Bradshaw TD (2012) Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol 5:102–114

    Article  CAS  PubMed  Google Scholar 

  6. Turriziani M, Caporaso P, Bonmassar L et al (2006) O6-(4-bromothenyl) guanine (PaTrin-2), a novel inhibitor of O6-alkylguanine DNA alkyl-transferase, increases the inhibitory activity of temozolomide against human acute leukaemia cells in vitro. Pharmacol Res 53:317–323

    Article  CAS  PubMed  Google Scholar 

  7. Kreinecker SS, Pirker C, Filipits M et al (2010) O6-Methylguanine DNA methyltransferase protein expression in tumor cells predicts outcome of temozolomide therapy in glioblastoma patients. Neuro Oncol 12:28–36

    Article  Google Scholar 

  8. Buttarelli FR, Massimino M, Antonelli M et al (2010) Evaluation status and prognostic significance of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in pediatric high grade gliomas. Childs Nerv Syst 26:1051–1056

    Article  PubMed  Google Scholar 

  9. Thomas RP, Recht L, Nagpal S (2013) Advances in the management of glioblastoma: the role of temozolomide and MGMT testing. Clin Pharmacol 5:1–9. doi:10.2147/CPAA.S26586

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Middleton MR, Grob JJ, Aaronson N et al (2000) Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol 18:158–166

    CAS  PubMed  Google Scholar 

  11. Pegg AE, Fang Q, Loktionova NA et al (2007) Human variants of O6-alkylguanine-DNA alkyltransferase. DNA Repair 6:1071–1078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Gerson SL (2004) MGMT: its role in cancer aetiology and cancer therapeutics. Nat Nat Rev Cancer 4:296–307

    Article  CAS  PubMed  Google Scholar 

  13. Harris LC, Potter PM, Tono K et al (1991) Characterization of the promoter region of the human O6-methylguanine-DNA mehthyltransferase gene. Nucleic Acids Res 19:6163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Chen FY, Harris LC, Remack JS et al (1997) Cytoplasmic sequestration of an O6-methylguanine-DNA methyltransferase enhancer binding protein in DNA repair-deficient human cells. Proc Natl Acad Sci USA 94:4348–4353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Fritz G, Tano K, Mitra S et al (1991) Inducibility of the DNA repair gene encoding O6-methylguanine-DNA methyltransferase in mammalian cells by DNA-damaging treatments. Mol Cell Biol 11:4660–4668

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Karran P (2001) Mechanisms of tolerance to DNA damaging therapeutic drugs. Carcinogenesis 22:1931–1937

    Article  CAS  PubMed  Google Scholar 

  17. Pegg AE (2000) Repair of O6-alkylguainne by alkyltransferases. Mutat Res 462:83–100

    Article  CAS  PubMed  Google Scholar 

  18. Middleton MR, Margison GP (2003) Improvement of chemotherapy efficiency by inactivation of a DNA repair pathway. Lancet Oncol 4:37–44

    Article  CAS  PubMed  Google Scholar 

  19. Quillien V, Vauléon E, Saikali S et al (2011) MGMT analysis in gliomas. Bull Cancer 98:291–303

    CAS  PubMed  Google Scholar 

  20. Matsukura S, Miyazaki K, Yakushiji H et al (2003) Combined loss of O6-methylguanine-DNA methyltransferase and hMLH1 accelerates progression of hepatocellular carcinoma. J Surg Oncol 82:194–200

    Article  CAS  PubMed  Google Scholar 

  21. Watanabe R, Nakasu Y, Tashiro H et al (2011) O6-methylguanine DNA methyltransferase expression in tumor cells predicts outcome of radiotherapy plus concomitant and adjuvant temozolomide therapy in patients with primary glioblastoma. Brain Tumor Pathol 28:127–135

    Article  CAS  PubMed  Google Scholar 

  22. Kuo LT, Kuo KT, Lee MJ et al (2009) Correlation among pathology, genetic and epigenetic profiles, and clinical outcome in oligodendroglial tumors. Int J Cancer 124:2872–2879

    Article  CAS  PubMed  Google Scholar 

  23. Challouf S, Ziadi S, Zaghdoudi R et al (2012) Patterns of aberrant DNA hypermethylation in nasopharyngeal carcinoma in Tunisian patients. Clin Chim Acta 413:795–802

    Article  CAS  PubMed  Google Scholar 

  24. Tuononen K, Tynninen O, Sarhadi VK et al (2012) The hypermethylation of the O6-methylguanine-DNA methyltransferase gene promoter in gliomas–correlation with array comparative genome hybridization results and IDH1 mutation. Genes Chromosom Cancer 51:20–29

    Article  CAS  PubMed  Google Scholar 

  25. Huang SH, Lee HS, Mar K et al (2010) Loss expression of O6-methylguanine DNA methyltransferase by promoter hypermethylation and its relationship to betel quid chewing in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:883–889

    Article  PubMed  Google Scholar 

  26. Kuester D, El-Rifai W, Peng D et al (2009) Silencing of MGMT expression by promoter hypermethylation in the metaplasia-dysplasia-carcinoma sequence of Barrett’s esophagus. Cancer Lett 275:117–126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Chan AO, Broaddus RR, Houlihan PS et al (2002) CpG island methylation in aberrant crypt foci of the colorectum. Am J Pathol 160:1823–1830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. van Nifterik KA, van den Berg J, van der Meide WF et al (2010) Absence of the MGMT protein as well as methylation of the MGMT promoter predict the sensitivity for temozolomide. Br J Cancer 103:29–35

    Article  PubMed Central  PubMed  Google Scholar 

  29. Amatu A, Sartore-Bianchi A, Moutinho C et al (2013) Promoter CpG island hypermethylation of the DNA repair enzyme MGMT predicts clinical response to dacarbazine in a phase II study for metastatic colorectal cancer. Clin Cancer Res 19:2265–2272

    Article  CAS  PubMed  Google Scholar 

  30. Newlands ES, Stevens MF, Wedge SR et al (1997) Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev 23:35–61

    Article  CAS  PubMed  Google Scholar 

  31. Liu L, Markowitz S, Gerson SL (1996) Mismatch repair mutations override alkyltransferase in conferring resistance to temozolomide but not to 1,3-bis(2-chloroethyl)nitrosourea. Cancer Res 56:5375–5379

    CAS  PubMed  Google Scholar 

  32. Alvino E, Castiglia D, Caporali S et al (2006) A single cycle of treatment with temozolomide, alone or combined with O6-benzylguanine, induces strong chemoresistance in melanoma cell clones in vitro:role of O6-methylguanine-DNA methyltransferase and the mismatch repair system. Int J Oncol 29:785–797

    CAS  PubMed  Google Scholar 

  33. Pagani E, Falcinelli S, Pepponi R et al (2007) Combined effect of temozolomide and hyperthermia on human melanoma cell growth and O6-methylguanine-DNA methyltransferase activity. Int J Oncol 30:443–451

    CAS  PubMed  Google Scholar 

  34. Hansen WK, Kelley MR (2000) Review of mammalian DNA repair and translational implications. J Pharmacol Exp Ther 295:1–9

    CAS  PubMed  Google Scholar 

  35. Augustine CK, Yoo JS, Potti A, Yoshimoto Y et al (2009) Genomic and molecular profiling predicts response to temozolomide in melanoma. Clin Cancer Res 15:502–510

    Article  CAS  PubMed  Google Scholar 

  36. Sasai K, Akagi T, Aoyanagi E et al (2007) O6-methylguanine-DNA methyltransferase is downregulated in transformed astrocyte cells:implications for anti-glioma therapies. Mol Cancer 6:36

    Article  PubMed Central  PubMed  Google Scholar 

  37. Malley DS, Hamoudi RA, Ko cialkowski S et al (2011) A distinct region of the MGMT CpG island critical for transcriptional regulation is preferentially methylated in glioblastoma cells and xenografts. Acta Neuropathol 121:651–661

    Article  CAS  PubMed  Google Scholar 

  38. Ramakrishnan V, Kushwaha D, Koay DC et al (2011) Post-transcriptional regulation of O6-methylguanine-DNA methyltransferase MGMT in glioblastomas. Cancer Biomark 10:185–193

    CAS  PubMed  Google Scholar 

  39. Taspinar M, Ilgaz S, Ozdemir M et al (2013) Effect of lomeguatrib-temozolomide combination on MGMT promoter methylation and expression in primary glioblastoma tumor cells. Tumour Biol 34:1935–1947

    Article  CAS  PubMed  Google Scholar 

  40. Watson AJ, Middleton MR, McGown G et al (2009) O6-methylguanine-DNA methyltransferase depletion and DNA damage in patients with melanoma treated with temozolomide alone or with lomeguatrib. Br J Cancer 100:1250–1256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Watson AJ, Sabharwal A, Thorncroft M et al (2010) Tumor O6-methylguanine-DNA methyltransferase inactivation by oral lomeguatrib. Clin Cancer Res 16:743–749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Quinn JA, Desjardins A, Weingart J et al (2005) Phase I trial of temozolomide plus O6-benzylguanine for patients with recurrent or progressive malignant glioma. J Clin Oncol 23:7178–7187

    Article  CAS  PubMed  Google Scholar 

  43. Osanai T, Takagi Y, Toriya Y et al (2005) Inverse correlation between the expression of O6-methylguanine-DNA methyltransferase (MGMT) and p53 in breast cancer. Jpn J Clin Oncol 35:121–125

    Article  PubMed  Google Scholar 

  44. Liu Y, Wang J, Zhang H et al (2010) The expression of O6-methylguanine DNA methyltransferase and p53 in non-small cell lung cancer and the association with the prognosis. Zhonghua Jie He He Hu Xi Za Zhi 33:427–431

    PubMed  Google Scholar 

  45. Lotfi M, Afsharnezhad S, Raziee HR et al (2011) Immunohistochemical assessment of MGMT expression and p53 mutation in glioblastoma multiforme. Tumori 97:104–108

    PubMed  Google Scholar 

  46. Blough MD, Zlatescu MC, Cairncross JG (2007) O6-methylguanine-DNA methyltransferase regulation by p53 in Astrocytic Cells. Cancer Res 67:580–584

    Article  CAS  PubMed  Google Scholar 

  47. Srivenugopal KS, Shou J, Mullapudi SR et al (2001) Enforced expression of wild-type p53 curtails the transcription of the O6-methylguanine-DNA methyltransferase gene in human tumor cells and enhances their sensitivity to alkylating agents. Clin Cancer Res 7:1398–1409

    CAS  PubMed  Google Scholar 

  48. Bobustuc GC, Baker CH, Limaye A et al (2010) Levetiracetam enhances p53-mediated MGMT inhibition and sensitizes glioblastoma cells to temozolomide. Neuro Oncol 12:917–927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Vannucchi S, Chiantore MV, Mangino G et al (2007) Perspectives in biomolecular therapeutic intervention in cancer: from the early to the new strategies with type I interferons. Curr Med Chem 14:667–679

    Article  CAS  PubMed  Google Scholar 

  50. Rosati SF, Williams RF, Nunnally LC et al (2008) IFN-beta sensitizes neuroblastoma to the antitumor activity of temozolomide by modulating O6-methylguanine DNA methyltransferase expression. Mol Cancer Ther 7:3852–3858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Motomura K, Natsume A, Kishida Y et al (2011) Benefits of interferon-beta and temozolomide combination therapy for newly diagnosed primary glioblastoma with the unmethylated MGMT promoter: a multicenter study. Cancer 17:1721–1730

    Article  Google Scholar 

  52. Jiang G, Liu YQ, Wei ZP et al (2010) Enhanced anti-tumor activity by the combination of a conditionally replicating adenovirus mediated interleukin-24 and dacarbazine against melanoma cells via induction of apoptosis. Cancer Lett 294:220–228

    Article  CAS  PubMed  Google Scholar 

  53. Kaliberova LN, Krendelchtchikova V, Harmon DK et al (2009) CRAdRGDflt-IL24 virotherapy in combination with chemotherapy of experimental glioma. Cancer Gene Ther 16:794–805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Alonso MM, Gomez-Manzano C, Bekele BN et al (2007) Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter. Cancer Res 67:11499–11504

    Article  CAS  PubMed  Google Scholar 

  55. Jiang G, Xin Y, Zheng JN et al (2011) Combining conditionally replicating adenovirus-mediated gene therapy with chemotherapy: a novel antitumor approach. Int J Cancer 129:263–274

    Article  CAS  PubMed  Google Scholar 

  56. Yang WQ, Zhang Y (2012) RNAi- mediated gene silencing in cancer therapy. Expert Opin Biol Ther 12:1495–1504

    Article  CAS  PubMed  Google Scholar 

  57. Kuo CC, Liu JF, Chang JY (2006) DNA repair enzyme, O6-methylguanine DNA methyltransferase, modulates cytotoxicity of camptothecin-derived topoisomerase I inhibitors. J Pharmacol Exp Ther 316:946–954

    Article  CAS  PubMed  Google Scholar 

  58. Kato T, Natsume A, Toda H et al (2010) Efficient delivery of liposome-mediated MGMT-siRNA reinforces the cytotoxity of temozolomide in GBM-initiating cells. Gene Ther 17:1363–1371

    Article  CAS  PubMed  Google Scholar 

  59. Zheng JN, Pei DS, Mao LJ et al (2009) Inhibition of renal cancer cell growth in vitro and in vivo with oncolytic adenovirus armed short hairpin RNA targeting Ki-67 encoding mRNA. Cancer Gene Ther 16:20–32

    Article  CAS  PubMed  Google Scholar 

  60. Zheng JN, Pei DS, Sun FH et al (2009) Inhibition of renal cancer cell growth by oncolytic adenovirus armed short hairpin RNA targeting hTERT gene. Cancer Biol Ther 8:84–91

    Article  CAS  PubMed  Google Scholar 

  61. Bobola MS, Kolstoe DD, Blank A et al (2010) Minimally cytotoxic doses of temozolomide produce radiosensitization in human glioblastoma cells regardless of MGMT expression. Mol Cancer Ther 9:1208–1218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Jiang G, Li LT, Xin Y et al (2012) Strategy for reversing resistance to temozolomide in malignant melanoma. Curr Med Chem 19:3886–3892

    Article  CAS  PubMed  Google Scholar 

  63. Ranson M, Middleton MR, Bridgewater J et al (2006) Lomeguatrib, a potent inhibitor of O6-alkylguanine-DNA-alkyltransferase: phase I safety, pharmacodynamic, and pharmacokinetic trial and evaluation in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res 12:1577–1584

    Article  CAS  PubMed  Google Scholar 

  64. Friedman HS, Pluda J, Quinn JA et al (2000) Phase I trial of carmustine plus O6-benzylguanine for patients with recurrent or progressive malignant glioma. J Clin Oncol 18:3522–3528

    CAS  PubMed  Google Scholar 

  65. Jiang G, Wei ZP, Pei DS et al (2011) A novel approach to overcome temozolomide resistance in glioma and melanoma: inactivation of MGMT by gene therapy. Biochem Biophys Res Commun 406:311–314

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project is supported by Grants from the National Natural Science Foundation of China (No. 81372916), the Science and Technology Department of Xuzhou city (No. XM13B084), the “Six Talent Peaks” Project of Jiangsu Province (No. 2013-WSN-014), and Xuzhou Medical Young Talents Project.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Nian Zheng.

Additional information

Guan Jiang and Ai-Jun Jiang have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, G., Jiang, AJ., Xin, Y. et al. Progression of O6-methylguanine-DNA methyltransferase and temozolomide resistance in cancer research. Mol Biol Rep 41, 6659–6665 (2014). https://doi.org/10.1007/s11033-014-3549-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3549-z

Keywords

Navigation