Skip to main content
Log in

Optimization of conditions for expression of recombinant interferon-γ in E.coli

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Interferon gamma (IFN-γ) is an important immunoregulatory cytokine that has a central role against viral and bacterial infections. In this study, the cDNA encoding 141 amino acids of mature IFN-γ from mice splenocytes was cloned in a prokaryotic expression vector pQE 30. Optimization of expression conditions resulted in high IFN-γ protein. Western blot showed that recombinant IFN-γ was specifically recognized by its counterpart anti-mouse IFN-γ antibodies. In vitro dose-dependent studies, with A549 and HeLa cell lines, showed that cloned IFN-γ was safe and had no effect on cell proliferation. The protein prediction and analysis using SOPMA program, revealed that IFN-γ had 80 α-helices, 8 β-turns jointed by 9 extended strands and 44 random coils. A total of four major clusters were observed with murine IFN-γ sharing 39 % homology with human IFN-γ. Pair-wise alignment studies with human revealed 26 % identity and 43.3 % similarity. The recovery of bioactive proteins from inclusion bodies (IBs) is a complex process and various protocols have been developed. We report here a simple, robust and inexpensive purification approach for obtaining recombinant IFN-γ protein expressed as IBs in E.coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stewart WE II (1979) The interferon system. Springer, New York, pp 13–145

    Book  Google Scholar 

  2. Gray PW, Goeddel DV (1983) Cloning and expression of murine immune interferon cDNA. Proc Natl Acad Sci 80:5842–5846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kamijo R, Shapiro D, Le J, Huang S, Aguet M, Vilcek J (1993) Generation of nitric oxide and induction of major histocompatibility complex class II. Proc Natl Acad Sci 90:6626–6630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Marekov LN, Vassileva RA, Ivanov VP, Sarafova AA, Zanev RG, Ivanov IG, Ivanova VS (1991).European patent App No 0446582 AI

  5. Reddy PK, Reddy SG, Narala VR, Majee SS, Konda S, Gunwar S, Reddy RC (2007) Increased yield of high purity recombinant human interferon-γ utilizing reversed phase column chromatography. Protein purif Expr 52(1):123–130

    Article  CAS  Google Scholar 

  6. Guan YX, Pan HX, Gao YG, Yao SJ, Cho MG (2005) Refolding and purification of recombinant human interferon-γ expressed as inclusion bodies in escherichia coli using size exclusion chromatography. Biotechnol Bioprocess Eng 10(2):122–127

    Article  CAS  Google Scholar 

  7. Arakawa T, Ejima D, Tsumoto K, Obeyama N, Tanaka Y, Kita Y, Timashef SN (2007) Suppression of protein interactions by arginine: a proposed mechanism of the arginine effects. Biophys Chem 127(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  8. Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-γ: an overview of signals, mechanisms and functions. J Leukoc Biol 75(2):163–189

    Article  CAS  PubMed  Google Scholar 

  9. Huang S, Hendriks W, Althage A, Hemmi S, Bluethmann H, Kamijo R, Vilcek J, Zinkernagel RM, Ague M (1993) Immune response in mice that lack the interferon-gamma receptor. Science 259(5102):1742–1745

    Article  CAS  PubMed  Google Scholar 

  10. Thomas SR, Mohr D, Stocker R (1994) Nitric oxide inhibits indoleamine 2,3-dioxygenase activity in interferon-gamma primed mononuclear phagocytes. J Biol Chem 269(20):14457–14464

    CAS  PubMed  Google Scholar 

  11. Geourjon C, Deleage G (1995) SOPMA: Significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11(6):681–684

    CAS  PubMed  Google Scholar 

  12. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  13. Ealick SE, Cook WJ, Senadhi VK, Carson M, Nagabhushan TL, Trotta PP, Bugg CE (1991) Three-dimensional structure of recombinant human interferon-γ. Science 252:698–702

    Article  CAS  PubMed  Google Scholar 

  14. Edward AH, George LS (1983) Two molecular weight species of murine gamma interferon. Virology 129(2):508–513

    Article  Google Scholar 

  15. Koyasu S, Nakauchi H, Kitamura K, Yonehara S, Okumura K, Tada T, Yahara I (1985) Production of interleukin 3 and gamma-interferon by an antigen-specific mouse suppressor T cell clone. J Immunol 134(5):3130–3136

    CAS  PubMed  Google Scholar 

  16. Ram S, Sarangan R, Collins JR, Masahiro S, Young HA (2009) Structural conservation of interferon gamma among vertebrates. Cytokine Growth Factor Rev 20(2):115–124

    Article  Google Scholar 

  17. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48(3):443–453

    Article  CAS  PubMed  Google Scholar 

  18. Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-γ. Annu Rev Immunol 15:749–795

    Article  CAS  PubMed  Google Scholar 

  19. Schneemann M, Schoedon G, Hofer S, Blau N, Guerrero L, Schaffner A (1993) Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes. J Infect Dis 167(6):1358–1363

    Article  CAS  PubMed  Google Scholar 

  20. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR (1993) An essential role for interferon γ in resistance to mycobacterium tuberculosis infection. J Exp Med 178(6):2249–2254

    Article  CAS  PubMed  Google Scholar 

  21. van Slooten ML, Hayon I, Babai I, Zakay-Rones Z, Wagner E, Storm G, Kedar E (2001) Immunoadjuvant activity of interferon-gamma-liposomes co-administered with influenza vaccines. Biochim Biophys Acta 1531(1–2):99–110

    Article  PubMed  Google Scholar 

  22. Condos R, Raju B, Canova A, Zhao BY, Weiden M, Rom WN, Pine R (2003) Recombinant γ interferon stimulates signal transduction and gene expression in alveolar macrophages in vitro and in tuberculosis patients. Infect Immun 71(4):2058–2064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meetul Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Singh, M. & Singh, S.B. Optimization of conditions for expression of recombinant interferon-γ in E.coli . Mol Biol Rep 41, 6537–6543 (2014). https://doi.org/10.1007/s11033-014-3537-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3537-3

Keywords

Navigation