Skip to main content
Log in

Complete mitochondrial genomes of Ceratobaeus sp. and Idris sp. (Hymenoptera: Scelionidae): shared gene rearrangements as potential phylogenetic markers at the tribal level

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We sequenced the complete mitochondrial genomes of two sceliond taxa (Ceratobaeus sp. and Idris sp.). An atypical tRNA-Arg which lacks a D-stem was identified in both taxa, and represents a potentially derived character of sceliond wasps. A number of tRNA genes have rearranged in the two mitochondrial genomes compared with the ancestral organization. Some of these derived genome organizations are shared, and thus have much potential as phylogenetic markers at the tribal level in the subfamily Scelioninae. We test the influence of third codon inclusion/exclusion, alignment methods and partition schemes on the reconstruction of phylogenetic relationships. The results show that inclusion of third codon positions does not appear to be problematic when investigating the phylogeny of closely related taxa. Muscle and PartitionFinder schemes significantly improve the likelihood scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693. doi:10.1093/nar/25.22.4692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Austin A, Field S (1997) The ovipositor system of scelionid and platygastrid wasps (Hymenoptera: Platygastroidea): comparative morphology and phylogenetic implications. Invertebr Syst 11:1–87

    Article  Google Scholar 

  3. Austin AD, Johnson NF, Dowton M (2005) Systematics, evolution, and biology of scelionid and platygastrid wasps. Annu Rev Entomol 50:553–582

    Article  CAS  PubMed  Google Scholar 

  4. Beckenbach AT (2011) Mitochondrial genome sequences of representatives of three families of scorpionflies (Order Mecoptera) and evolution in a major duplication of coding sequence. Genome 54:368–376

    Article  CAS  PubMed  Google Scholar 

  5. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Boore JL (2000) The duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of deuterostome animals. In: Sankoff D, Nadeau J (eds) Comparative genomics. Kluwer Academic Press, Boston, pp 133–147

    Chapter  Google Scholar 

  7. Boore JL, Brown WM (1998) Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr Opin Genet Dev 8:668–674

    Article  CAS  PubMed  Google Scholar 

  8. Cameron SL, Dowton M, Castro LR, Ruberu K, Whiting MF, Austin AD, Diement K, Stevens J (2008) Mitochondrial genome organization and phylogeny of two vespid wasps. Genome 51:800–808

    Article  CAS  PubMed  Google Scholar 

  9. Cameron SL, Lambkin CL, Barker SC, Whiting MF (2007) A mitochondrial genome phylogeny of Diptera: whole genome sequence data accurately resolve relationships over broad timescales with high precision. Syst Entomol 32:40–59

    Article  Google Scholar 

  10. Cameron SL, Lo N, Bourguignon T, Svenson GJ, Evans TA (2012) A mitochondrial genome phylogeny of termites (Blattodea: Termitoidae): robust support for interfamilial relationships and molecular synapomorphies define major clades. Mol Phylogenet Evol 65:163–173. doi:10.1016/j.ympev.2012.05.034

    Article  PubMed  Google Scholar 

  11. Carey D, Murphy NP, Austin AD (2006) Molecular phylogenetics and the evolution of wing reduction in the Baeini (Hymenoptera: Scelionidae): parasitoids of spider eggs. Invertebr Syst 20:489–501

    Article  CAS  Google Scholar 

  12. Castro LR, Dowton M (2005) The position of the Hymenoptera within the Holometabola as inferred from the mitochondrial genome of Perga condei (Hymenoptera: Symphyta: Pergidae). Mol Phylogenet Evol 34:469–479

    Article  CAS  PubMed  Google Scholar 

  13. Castro LR, Ruberu K, Dowton M (2006) Mitochondrial genomes of Vanhornia eucnemidarum (Apocrita: Vanhorniidae) and Primeuchroeus spp. (Aculeata: Chrysididae): evidence of rearranged mitochondrial genomes within the Apocrita (Insecta: Hymenoptera). Genome 49:752–766

    Article  CAS  PubMed  Google Scholar 

  14. Cha SY, Yoon HJ, Lee EM, Yoon MH, Hwang JS, Jin BR, Han YS, Kim I (2007) The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblebee, Bombus ignitus (Hymenoptera: Apidae). Gene 392:206–220

    Article  CAS  PubMed  Google Scholar 

  15. Cook CE (2005) The complete mitochondrial genome of the stomatopod crustacean Squilla mantis. BMC Genomics 6:105

    Article  PubMed Central  PubMed  Google Scholar 

  16. Dowton M, Austin AD (1999) Evolutionary dynamics of a mitochondrial rearrangement “Hot Spot” in the Hymenoptera. Mol Biol Evol 16:298–309

    Article  CAS  PubMed  Google Scholar 

  17. Dowton M, Austin AD (2001) Simultaneous analysis of 16S, 28S, COI and morphology in the Hymenoptera: Apocrita—evolutionary transitions among parasitic wasps. Biol J Linn Soc 74:87–111

    Google Scholar 

  18. Dowton M, Cameron SL, Austin AD, Whiting MF (2009) Phylogenetic approaches for the analysis of mitochondrial genome sequence datain the Hymenoptera—a lineage with both rapidly and slowly evolving mitochondrial genomes. Mol Phylogenet Evol 52:512–519

    Article  CAS  PubMed  Google Scholar 

  19. Dowton M, Castro LR, Austin AD (2002) Mitochondrial gene rearrangements as phylogenetic characters in the invertebrates: the examination of genome ‘morphology’. Invertebr Syst 16:345–356

    Article  Google Scholar 

  20. Dowton M, Castro LR, Campbell SL, Bargon SD, Austin AD (2003) Frequent mitochondrial gene rearrangements at the Hymenopteran nad3–nad5 junction. J Mol Evol 56:517–526

    Article  CAS  PubMed  Google Scholar 

  21. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Fay JC, Wu C-I (2003) Sequence divergence, functional constraint, and selection in protein evolution. Annu Rev Genomics Hum Genet 4:213–235. doi:10.1146/annurev.genom.4.020303.162528

    Article  CAS  PubMed  Google Scholar 

  23. Fenn JD, Song H, Cameron SL, Whiting MF (2008) A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data. Mol Phylogenet Evol 49:59–68

    Article  CAS  PubMed  Google Scholar 

  24. Galloway ID, Austin AD (1984) Revision of the Scelioninae (Hymenoptera : Scelionidae) in Australia. Aust J Zool 32:1–138. doi:10.1071/ajzs099

    Article  Google Scholar 

  25. Garey JR, Wolstenholme DR (1989) Platyhelminth mitochondrial DNA: evidence for early evolutionary origin of a tRNA(serAGN) that contains a dihydrouridine arm replacement loop, and of serine-specifying AGA and AGG codons. J Mol Evol 28:374–387

    Article  CAS  PubMed  Google Scholar 

  26. Gotzek D, Clarke J, Shoemaker D (2010) Mitochondrial genome evolution in fire ants (Hymenoptera: Formicidae). BMC Evol Biol 10:300

    Article  PubMed Central  PubMed  Google Scholar 

  27. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  28. Iqbal M, Austin AD (2000) A preliminary phylogeny for the Baeini (Hymenoptera: Scelionidae): endoparasitoids of spider eggs. In: Austin AD, Dowton M (eds) Hymenoptera: evolution, biodiversity and biological control. CSIRO Publishing, Melbourne, pp 178–191

    Google Scholar 

  29. Jeon H, Lee K, Kim K, Hwang U, Eom K (2005) Complete sequence and structure of the mitochondrial genome of the human tapeworm, Taenia asiatica (Platyhelminthes; Cestoda). Parasitology 130:717–726

  30. Johnson NF (2013) Fauna Europaea: Scelionidae. In: Noyes J. (ed) Fauna Europaea: Hymenoptera. Fauna Europaea Version 2.6. www.faunaeurorg. Accessed 9 April 2013

  31. Kaltenpoth M, Corneli PS, Dunn DM, Weiss RB, Strohm E, Seger J (2012) Accelerated evolution of mitochondrial but not nuclear genomes of Hymenoptera: new evidence from crabronid wasps. PLoS One 7:e32826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701. doi:10.1093/molbev/mss020

    Article  CAS  PubMed  Google Scholar 

  33. Li H, Liu H, Shi A, Stys P, Zhou X, Cai W (2012) The complete mitochondrial genome and novel gene arrangement of the unique-headed bug Stenopirates sp. (Hemiptera: Enicocephalidae). PLoS One 7:e29419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Mao M, Valerio A, Austin AD, Dowton M, Johnson NF (2012) The first mitochondrial genome for the wasp superfamily Platygastroidea: the egg parasitoid Trissolcus basalis. Genome 55:194–204. doi:10.1139/g2012-005

    Article  CAS  PubMed  Google Scholar 

  36. Masner L (1976) Revisionary notes and keys to world genera of Scelionidae (Hymenoptera: Proctotrupoidea). Mem Entomol Soc Can 108:1–87

    Article  Google Scholar 

  37. Moritz C, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu Rev Ecol Syst 18:269–292

    Article  Google Scholar 

  38. Murphy N, Carey D, Castro L, Dowton M, Austin A (2007) Phylogeny of the platygastroid wasps (Hymenoptera) based on sequences from the 18S rRNA, 28S rRNA and cytochrome oxidase I genes: implications for the evolution of the ovipositor system and host relationships. Biol J Linn Soc 91:653–669. doi:10.1111/j.1095-8312.2007.00825.x

    Article  Google Scholar 

  39. Nelson LA, Lambkin CL, Batterham P, Wallman JF, Dowton M, Whiting MF, Yeates DK, Cameron SL (2012) Beyond barcoding: a mitochondrial genomics approach to molecular phylogenetics and diagnostics of blowflies (Diptera: Calliphoridae). Gene 511:131–142. doi:10.1016/j.gene.2012.09.103

    Article  CAS  PubMed  Google Scholar 

  40. Nylander JA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67

    Article  PubMed  Google Scholar 

  41. Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474

    Article  CAS  PubMed  Google Scholar 

  42. Oliveira DCSG, Raychoudhury R, Lavrov DV, Werren JH (2008) Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Mol Biol Evol 25:2167–2180

  43. Rambaut A, Drummond AJ (2009) Tracer version 1.5.

  44. Reyes A, Gissi C, Pesole G, Saccone C (1998) Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol 15:957–966

    Article  CAS  PubMed  Google Scholar 

  45. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  46. Ronquist F, Rasnitsyn AP, Roy A, Eriksson K, Lindgren M (1999) Phylogeny of the Hymenoptera: A cladistic reanalysis of Rasnitsyn’s (1988) data. Zool Scr 28:13–50

    Article  Google Scholar 

  47. Roques S, Fox CJ, Villasana MI, Rico C (2006) The complete mitochondrial genome of the whiting, Merlangius merlangus and the haddock, Melanogrammus aeglefinus: a detailed genomic comparison among closely related species of the Gadidae family. Gene 383:12–23. doi:10.1016/j.gene.2006.06.018

    Article  CAS  PubMed  Google Scholar 

  48. Saccone C, De Giorgi C, Gissi C, Pesole G, Reyes A (1999) Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. Gene 238:195–209

    Article  CAS  PubMed  Google Scholar 

  49. Shao R, Barker SC (2003) The highly rearranged mitochondrial genome of the plague thrips, Thrips imaginis (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes. Mol Biol Evol 20:362–370

    Article  CAS  PubMed  Google Scholar 

  50. Sheffield NC, Song H, Cameron L, Whiting MF (2008) A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda: Insecta) and genome descriptions of six new beetles. Mol Biol Evol 25:2499–2509. doi:10.1093/molbev/msn198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Simon C, Buckley TR, Frati F, Stewart JB, Beckenbach AT (2006) Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annu Rev Ecol Evol Syst 37:545–579. doi:10.1146/annurev.ecolsys.37.091305.110018

    Article  Google Scholar 

  52. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    Article  CAS  Google Scholar 

  53. Sullivan J, Joyce P (2005) Model selection in phylogenetics. Annu Rev Ecol Evol Syst 36:445–466. doi:10.1146/annurev.ecolsys.36.102003.152633

    Article  Google Scholar 

  54. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Wei SJ, Shi M, Sharkey MJ, van Achterberg C, Chen XX (2010) Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects. BMC Genomics 11:371

    Article  PubMed Central  PubMed  Google Scholar 

  57. Xiao JH, Jia JG, Murphy RW, Huang DW (2011) Rapid evolution of the mitochondrial genome in chalcidoid wasps (Hymenoptera: Chalcidoidea) driven by parasitic lifestyles. PLoS One 6:e26645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Yang X, Xue D, Han H (2013) The complete mitochondrial genome of Biston panterinaria (Lepidoptera: Geometridae), with phylogenetic utility of mitochondrial genome in the Lepidoptera. Gene 515:349–358. doi:10.1016/j.gene.2012.11.031

    Article  CAS  PubMed  Google Scholar 

  59. Zhang DX, Hewitt GM (1997) Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst Ecol 25:99–120

    Article  Google Scholar 

  60. Zhang Z, Li J, Zhao X-Q, Wang J, Wong GK-S, Yu J (2006) KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinform 4:259–263

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Andy Austin (Adelaide University) for the generous provision of biological samples, and to Tracey Gibson for her kind assistance with the laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Mao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, M., Dowton, M. Complete mitochondrial genomes of Ceratobaeus sp. and Idris sp. (Hymenoptera: Scelionidae): shared gene rearrangements as potential phylogenetic markers at the tribal level. Mol Biol Rep 41, 6419–6427 (2014). https://doi.org/10.1007/s11033-014-3522-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3522-x

Keywords

Navigation