Skip to main content

Advertisement

Log in

Genome-wide screening of pathogenicity islands in Mycobacterium tuberculosis based on the genomic barcode visualization

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Mycobacterium tuberculosis (M. tuberculosis) is one of the most widely spread human pathogenic bacteria, and it frequently exchanges pathogenesis genes among its strains or with other pathogenic microbes. The purpose of this study was to screen the pathogenicity islands (PAIs) in M. tuberculosis using the genomic barcode visualization technique and to characterize the functions of the detected PAIs. By visually screening the barcode image of the M. tuberculosis chromosomes, three candidate PAIs were detected as MPI-1, MPI-2 and MPI-3, among which MPI-2 and MPI-3 were known to harbor pathogenesis genes, and MPI-1 represents a novel candidate. Based on the functional annotations of Pfam domains and GO categories, both MPI-2 and MPI-3 carry genes encoding PE/PPE family proteins, MPI-2 encodes the type VII secretion system, and MPI-3 encodes genes for mycolic acid synthesis in the cell wall. Some of these genes were already widely used in early diagnosis or treatment of M. tuberculosis. The novel candidate PAI MPI-1 encodes CRISPR-C as family proteins, which are known to be associated with persistent infection of M. tuberculosis. Our data represents a molecular basis and protocol for comprehensive annotating the pathogenic systems of M. tuberculosis, and will also facilitate the development of diagnosis and vaccination techniques of M. tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gazdik MA, McDonough KA (2005) Identification of cyclic AMP-regulated genes in Mycobacterium tuberculosis complex bacteria under low-oxygen conditions. J Bacteriol 187:2681–2692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Sanz J, Navarro J, Arbués A, Martín C, Marijuán PC, Moreno Y (2011) The transcriptional regulatory network of Mycobacterium tuberculosis. PLoS ONE 6:e22178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687

    Article  CAS  PubMed  Google Scholar 

  4. Pallen MJ, Wren BW (2007) Bacterial pathogenomics. Nature 449:835–842

    Article  CAS  PubMed  Google Scholar 

  5. Fernández-Gómez B, Fernàndez-Guerra A, Casamayor EO, González JM, Pedrós-Alió C, Acinas SG (2012) Patterns and architecture of genomic islands in marine bacteria. BMC Genom 13:347

    Article  Google Scholar 

  6. Hacker J, Blum-Oehler G, Mühldorfer I, Tschäpe H (1997) Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23:1089–1097

    Article  CAS  PubMed  Google Scholar 

  7. Sui SJH, Fedynak A, Hsiao WWL, Langille MGI, Brinkman FSL (2009) The association of virulence factors with genomic islands. PLoS ONE 4:e8094

    Article  Google Scholar 

  8. Becq J et al (2007) Contribution of horizontally acquired genomic islands to the evolution of the tubercle bacilli. Mol Biol Evol 24:1861–1871

    Article  CAS  PubMed  Google Scholar 

  9. Yu G et al (2011) Integrative analysis of transcriptome and genome indicates two potential genomic islands are associated with pathogenesis of Mycobacterium tuberculosis. Gene 489(1):21–29

    Article  CAS  PubMed  Google Scholar 

  10. Boyd EF, Almagro-Moreno S, Parent MA (2009) Genomic islands are dynamic, ancient integrative elements in bacterial evolution. Trends Microbiol 17:47–53

    Article  CAS  PubMed  Google Scholar 

  11. Karlin S (2001) Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes. Trends Microbiol 9:335–343

    Article  CAS  PubMed  Google Scholar 

  12. Veyrier F, Pletzer D, Turenne C, Behr MA (2009) Phylogenetic detection of horizontal gene transfer during the step-wise genesis of Mycobacterium tuberculosis. BMC Evol Biol 9:196

    Article  PubMed Central  PubMed  Google Scholar 

  13. Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33:376–393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Karlin S, Mrazek J, Ma J, Brocchieri L (2005) Predicted highly expressed genes in archaeal genomes. Proc Natl Acad Sci USA 102:7303–7308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Zhou F, Olman V, Xu Y (2008) Barcodes for genomes and applications. BMC Bioinform 9:546

    Article  Google Scholar 

  16. Bateman A et al (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–D141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Götz S et al (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435

    Article  PubMed Central  PubMed  Google Scholar 

  18. Wang G, Zhou F, Olman V, Li F, Xu Y (2010) Prediction of pathogenicity islands in enterohemorrhagic Escherichia coli O157:H7 using genomic barcodes. FEBS Lett 584:194–198

    Article  CAS  PubMed  Google Scholar 

  19. Gal-Mor O, Finlay BB (2006) Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell Microbiol 8:1707–1719

    Article  CAS  PubMed  Google Scholar 

  20. Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci 95:9413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Mrazek J, Bhaya D, Grossman AR, Karlin S (2001) Highly expressed and alien genes of the Synechocystis genome. Nucleic Acids Res 29:1590–1601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lima-Mendez G, Van Helden J, Toussaint A, Leplae R (2008) Prophinder: a computational tool for prophage prediction in prokaryotic genomes. Bioinformatics 24:863–865

    Article  CAS  PubMed  Google Scholar 

  23. Letek, M et al (2010) The genome of a pathogenic rhodococcus: cooptive virulence underpinned by key gene acquisitions. PLoS Genet 6(9):e1001145

    Article  PubMed Central  PubMed  Google Scholar 

  24. Cole ST (1999) Learning from the genome sequence of Mycobacterium tuberculosis H37Rv. FEBS Lett 452:7–10

    Article  CAS  PubMed  Google Scholar 

  25. Freitas-Vieira A, Anes E, Moniz-Pereira J (1998) The site-specific recombination locus of mycobacteriophage Ms6 determines DNA integration at the tRNA(Ala) gene of Mycobacterium spp. Microbiology 144(Pt 12):3397–3406

    Article  CAS  PubMed  Google Scholar 

  26. Mao F, Dam P, Chou J, Olman V, Xu Y (2009) DOOR: a database for prokaryotic operons. Nucleic Acids Res 37:D459–D463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Arnvig K, Young D (2012) Non-coding RNA and its potential role in Mycobacterium tuberculosis pathogenesis. RNA Biol 9:427–436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Bryant J, Chewapreecha C, Bentley SD (2012) Developing insights into the mechanisms of evolution of bacterial pathogens from whole-genome sequences. Future Microbiol 7:1283–1296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Sampson SL (2011) Mycobacterial PE/PPE proteins at the host-pathogen interface. Clin Dev Immunol 2011:1–11

    Article  Google Scholar 

  31. Delogu G et al (2006) PE_PGRS proteins are differentially expressed by Mycobacterium tuberculosis in host tissues. Microb Infect 8:2061–2067

    Article  CAS  Google Scholar 

  32. Rachman H et al (2006) Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect Immun 74:1233–1242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Singh KK, Dong Y, Patibandla SA, McMurray DN, Arora VK, Laal S (2005) Immunogenicity of the Mycobacterium tuberculosis PPE55 (Rv3347c) protein during incipient and clinical tuberculosis. Infect Immun 73:5004–5014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Koh KW, Soh SE, Seah GT (2009) Strong antibody responses to Mycobacterium tuberculosis PE-PGRS62 protein are associated with latent and active tuberculosis. Infect Immun 77:3337–3343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Singh PP, Parra M, Cadieux N, Brennan MJ (2008) A comparative study of host response to three Mycobacterium tuberculosis PE_PGRS proteins. Microbiology 154:3469–3479

    Article  CAS  PubMed  Google Scholar 

  36. Raman K, Yeturu K, Chandra N (2008) targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst Biol 2:109

    Article  PubMed Central  PubMed  Google Scholar 

  37. Barrett T et al (2012) BioProject and BioSample databases at NCBI: facilitating capture and organization of metadata. Nucleic Acids Res 40:D57–D63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Finn RD et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (81101295 and 81071424), Specialized Research Fund for the Doctoral Program of Higher Education of China (20110061120093), China Postdoctoral Science Foundation (20110491311 and 2012T50304), Foundation of Jilin Provincial Health Department (2011Z049),Foundation of Jilin Provincial Science and Technology Department (20130522013JH), Norman Bethune Program of Jilin University (2012219). It was also supported in part by the Shenzhen Research Grant ZDSY20120617113021359, China 973 program (2011CB512003 and 2010CB732606-6) and NSFC 31000447. Computing resources were partly provided by the Dawning supercomputing clusters at SIAT CAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoqing Wang or Fan Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 984 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Zhou, F., Xu, G. et al. Genome-wide screening of pathogenicity islands in Mycobacterium tuberculosis based on the genomic barcode visualization. Mol Biol Rep 41, 5883–5889 (2014). https://doi.org/10.1007/s11033-014-3463-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3463-4

Keywords

Navigation