Skip to main content

Advertisement

Log in

Expression patterns of miR-221 and its target Caspase-3 in different cancer cell lines

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Caspases are important initiators and most well-known finishers of apoptosis. By changing the death propagation homeostatic equilibrium, their different expression patterns might trigger the progression of hazardous diseases like cancer. miR-221 is an oncogenic miRNA. It is known to have both anti-angiogenic and angiogenic effect. The aim of this work was to compare the expression levels of miR-221 and its target caspase-3 in different cancer cell lines and to find out a relationship between these two. We also tried to establish a prominent relationship between miR-221 and its role in apoptosis by studying their expression levels. Our results indicate that expression of caspase-3 is quite lower as compared to miR-221 expression in all of the selected cancer cell lines. As a result, we conclude that miR-221 may have a crucial role in repressing the expression of caspase-3 which may contribute to a lower apoptotic rate, thus supporting the selection of more aggressive cancer cells. To our knowledge, this is the first study related to the expression levels of caspase-3 and miR-221 in different cell lines at the same time. We expect that our study might pave the way for better understanding the role of miR-221 in apoptotic regulation of caspase-3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rodriguez-Berriguete G et al (2012) Immunoreactivity to caspase-3, caspase-7, caspase-8, and caspase-9 forms is frequently lost in human prostate tumors. Hum Pathol 43(2):229–237

    Article  CAS  PubMed  Google Scholar 

  2. Fulda S (2009) Caspase-8 in cancer biology and therapy. Cancer Lett 281(2):128–133

    Article  CAS  PubMed  Google Scholar 

  3. Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27(48):6194–6206

    Article  CAS  PubMed  Google Scholar 

  4. Logue SE, Martin SJ (2008) Caspase activation cascades in apoptosis. Biochem Soc Trans 36(Pt 1):1–9

    Article  CAS  PubMed  Google Scholar 

  5. Wang ZB, Liu YQ, Cui YF (2005) Pathways to caspase activation. Cell Biol Int 29(7):489–496

    Article  CAS  PubMed  Google Scholar 

  6. Jiang X, Wang X (2004) Cytochrome C-mediated apoptosis. Annu Rev Biochem 73:87–106

    Article  CAS  PubMed  Google Scholar 

  7. Creagh EM, Martin SJ (2001) Caspases: cellular demolition experts. Biochem Soc Trans 29(Pt 6):696–702

    Article  CAS  PubMed  Google Scholar 

  8. Shi L et al (2010) MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res 1352:255–264

    Article  CAS  PubMed  Google Scholar 

  9. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

    Article  CAS  PubMed  Google Scholar 

  10. le Sage C et al (2007) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26(15):3699–3708

    Article  PubMed Central  PubMed  Google Scholar 

  11. Spizzo R et al (2009) SnapShot: microRNAs in cancer. Cell 137(3):586

    Article  CAS  PubMed  Google Scholar 

  12. Terasawa K et al (2009) Sustained activation of ERK1/2 by NGF induces microRNA-221 and 222 in PC12 cells. FEBS J 276(12):3269–3276

    Article  CAS  PubMed  Google Scholar 

  13. Gillies JK, Lorimer IA (2007) Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 6(16):2005–2009

    Article  CAS  PubMed  Google Scholar 

  14. Felicetti F et al (2008) The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res 68(8):2745–5410

    Article  CAS  PubMed  Google Scholar 

  15. Tong AW et al (2009) MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther 16(3):206–216

    CAS  PubMed  Google Scholar 

  16. Ambs S et al (2008) Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 68(15):6162–6170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Galardi S et al (2007) miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282(32):23716–23724

    Article  CAS  PubMed  Google Scholar 

  18. Lu Q et al (2010) MicroRNA-221 silencing predisposed human bladder cancer cells to undergo apoptosis induced by TRAIL. Urol Oncol 28(6):635–641

    Article  CAS  PubMed  Google Scholar 

  19. Gramantieri L et al (2009) MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res 15(16):5073–5081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Zhang CZ et al (2010) MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer 9:229

    Article  PubMed Central  PubMed  Google Scholar 

  21. Sredni ST et al (2010) Upregulation of mir-221 and mir-222 in atypical teratoid/rhabdoid tumors: potential therapeutic targets. Childs Nerv Syst 26(3):279–283

    Article  PubMed  Google Scholar 

  22. Shah MY, Calin GA (2011) MicroRNAs miR-221 and miR-222: a new level of regulation in aggressive breast cancer. Genome Med 3(8):56

    Article  PubMed Central  PubMed  Google Scholar 

  23. Chen WX et al (2013) miR-221/222: promising biomarkers for breast cancer. Tumour Biol 34(3):1361–1370

    Article  CAS  PubMed  Google Scholar 

  24. Dentelli P et al (2014) miR-221/222 control luminal breast cancer tumor progression by regulating different targets. Cell Cycle 13(11):1

    Article  Google Scholar 

  25. Acunzo M et al (2012) miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222. Oncogene 31(5):634–642

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Sun T et al (2012) The altered expression of MiR-221/-222 and MiR-23b/-27b is associated with the development of human castration resistant prostate cancer. Prostate 72(10):1093–1103

    Article  CAS  PubMed  Google Scholar 

  27. Santos JI et al (2014) Influence of peripheral whole-blood microRNA-7 and microRNA-221 high expression levels on the acquisition of castration-resistant prostate cancer: evidences from in vitro and in vivo studies. Tumour Biol. doi:10.1007/s13277-014-1918-9

  28. Sun T et al (2013) MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene 1:11

    Google Scholar 

  29. Zheng C, Yinghao S, Li J (2012) MiR-221 expression affects invasion potential of human prostate carcinoma cell lines by targeting DVL2. Med Oncol 29(2):815–822

    Article  CAS  PubMed  Google Scholar 

  30. Pang Y, Young CY, Yuan H (2010) MicroRNAs and prostate cancer. Acta Biochim Biophys Sin (Shanghai) 42(6):363–369

    Article  CAS  Google Scholar 

  31. Gordanpour A et al (2011) miR-221 Is down-regulated in TMPRSS2: ERG fusion-positive prostate cancer. Anticancer Res 31(2):403–410

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Gocze K et al (2013) Unique microRNA expression profiles in cervical cancer. Anticancer Res 33(6):2561–2567

    CAS  PubMed  Google Scholar 

  33. Wang M et al (2014) Deregulated microRNAs in gastric cancer tissue-derived mesenchymal stem cells: novel biomarkers and a mechanism for gastric cancer. Br J Cancer 110(5):1199–1210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Nassirpour R, Mehta PP, Baxi SM, Yin MJ (2013) miR-221 promotes tumorigenesis in human triple negative breast cancer cells. PLoS ONE 8(4):e62170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Chen JC, Su YH, Chiu CF, Chang YW, Yu YH, Tseng CF, Chen HA, Su JL (2014) Suppression of dicer increases sensitivity to Gefitinib in human lung cancer cells. Ann Surg Oncol. doi:10.1245/s10434-014-3673-y

Download references

Acknowledgments

Kaifee Arman is recipient of Graduate Scholarship from TUBITAK under the program 2215- Graduate Scholarship Program for International Students.

Conflict of interest

Authors have no conflict of interest regarding the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sercan Ergun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ergun, S., Arman, K., Temiz, E. et al. Expression patterns of miR-221 and its target Caspase-3 in different cancer cell lines. Mol Biol Rep 41, 5877–5881 (2014). https://doi.org/10.1007/s11033-014-3461-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3461-6

Keywords

Navigation