Skip to main content

Advertisement

Log in

Single nucleotide polymorphisms in genes encoding toll-like receptors 7, 8 and 9 in Danish patients with systemic lupus erythematosus

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Several studies indicate a role for toll-like receptors (TLRs) in the pathogenesis of systemic lupus erythematosus (SLE). We aimed to investigate the risk of SLE and typical clinical and serological manifestations of SLE potentially conferred by selected single nucleotide polymorphisms (SNPs) of genes encoding TLR7, TLR8, and TLR9. Using a multiplexed bead-based assay, we analyzed eight SNPs in a cohort of 142 Danish SLE patients and a gender-matched control cohort comprising 443 individuals. Our results showed an association between the rs3853839 polymorphism of TLR7 and SLE (G vs. C, P = 0.008, OR 1.60, 95 % CI 1.12–2.27 in females; P = 0.02, OR 4.50, 95 % CI 1.18–16.7 in males) confirming recent findings in other populations. Additionally, an association between the rs3764879 polymorphism of TLR8 and SLE (G vs. C, P < 0.05, OR 1.36, 95 % CI 0.99–1.86 in females; P = 0.06, OR 4.00, 95 % CI 0.90–17.3 in males) was found. None of the other investigated SNPs were associated with SLE but several SNPs were associated with clinical and serological manifestations. In summary, a previously shown association between the rs3853839 SNP of TLR7 and SLE in Asian patients was also found in Danish patients. Together with the association of several other SNPs of TLR8 and TLR9 with various clinical and serological manifestations of SLE these findings corroborate the pathogenic significance of TLRs in SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rahman A, Isenberg DA (2008) Systemic lupus erythematosus. N Engl J Med 358(9):929–939

    Article  CAS  PubMed  Google Scholar 

  2. Jacobsen S, Petersen J, Ullman S, Junker P, Voss A, Rasmussen JM, Tarp U, Poulsen LH, van Overeem G, Skaarup B, Hansen TM, Pødenphant J, Halberg P (1998) A multicentre study of 513 Danish patients with systemic lupus erythematosus. I. Disease manifestations and analyses of clinical subsets. Clin Rheumatol 17(6):468–477

    Article  CAS  PubMed  Google Scholar 

  3. Faurschou M, Dreyer L, Kamper A-L, Starklint H, Jacobsen S (2010) Long-term mortality and renal outcome in a cohort of 100 patients with lupus nephritis. Arthritis Care Res (Hoboken) 62(6):873–880

    Article  Google Scholar 

  4. Agmon-Levin N, Mosca M, Petri M, Shoenfeld Y (2012) Systemic lupus erythematosus one disease or many? Autoimmun Rev 11(8):593–595

    Article  CAS  PubMed  Google Scholar 

  5. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA, Harley JB (2003) Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 349(16):1526–1533

    Article  CAS  PubMed  Google Scholar 

  6. Fismen S, Hedberg A, Fenton KA, Jacobsen S, Krarup E, Kamper AL, Rekvig OP, Mortensen ES (2009) Circulating chromatin-anti-chromatin antibody complexes bind with high affinity to dermo-epidermal structures in murine and human lupus nephritis. Lupus 18(7):597–607

    Article  CAS  PubMed  Google Scholar 

  7. Valencia X, Yarboro C, Illei G, Lipsky PE (2007) Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol 178(4):2579–2588

    Article  CAS  PubMed  Google Scholar 

  8. Carter NA, Rosser EC, Mauri C (2012) Interleukin-10 produced by B cells is crucial for the suppression of Th17/Th1 responses, induction of T regulatory type 1 cells and reduction of collagen-induced arthritis. Arthritis Res Ther 14(1):R32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Munoz LE, van Bavel C, Franz S, Berden J, Herrmann M, van der Vlag J (2008) Apoptosis in the pathogenesis of systemic lupus erythematosus. Lupus 17(5):371–375

    Article  CAS  PubMed  Google Scholar 

  10. Jørgensen MH, Rekvig OP, Jacobsen RS, Jacobsen S, Fenton KA (2011) Circulating levels of chromatin fragments are inversely correlated with anti-dsDNA antibody levels in human and murine systemic lupus erythematosus. Immunol Lett 138(2):179–186

    Article  PubMed  Google Scholar 

  11. Nielsen CT, Østergaard O, Stener L, Iversen LV, Truedsson L, Gullstrand B, Jacobsen S, Heegaard NHH (2012) Increased IgG on cell-derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation. Arthritis Rheum 64(4):1227–1236

    Article  CAS  PubMed  Google Scholar 

  12. Santiago-Raber M-L, Baudino L, Izui S (2009) Emerging roles of TLR7 and TLR9 in murine SLE. J Autoimmun 33(3–4):231–238

    Article  CAS  PubMed  Google Scholar 

  13. Deane JA, Pisitkun P, Barrett RS, Feigenbaum L, Town T, Ward JM, Flavell RA, Bolland S (2007) Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 27(5):801–810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S (2006) Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312(5780):1669–1672

    Article  CAS  PubMed  Google Scholar 

  15. Shen N, Fu Q, Deng Y, Qian X, Zhao J, Kaufman KM, Wu YL, Yu CY, Tang Y, Chen J-Y, Yang W, Wong M, Kawasaki A, Tsuchiya N, Sumida T, Kawaguchi Y, Howe HS, Mok MY, Bang S-Y, Liu F-L, Chang D-M, Takasaki Y, Hashimoto H, Harley JB, Guthridge JM, Grossman JM, Cantor RM, Song YW, Bae S-C, Chen S, Hahn BH, Lau YL, Tsao BP (2010) Sex-specific association of X-linked Toll-like receptor 7 (TLR7) with male systemic lupus erythematosus. Proc Natl Acad Sci USA 107(36):15838–15843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O, Akira S (2004) Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 5(10):1061–1068

    Article  CAS  PubMed  Google Scholar 

  17. Armstrong DL, Reiff A, Myones BL, Quismorio FP, Klein-Gitelman M, McCurdy D, Wagner-Weiner L, Silverman E, Ojwang JO, Kaufman KM, Kelly JA, Merrill JT, Harley JB, Bae S-C, Vyse TJ, Gilkeson GS, Gaffney PM, Moser KL, Putterman C, Edberg JC, Brown EE, Ziegler J, Langefeld CD, Zidovetzki R, Jacob CO (2009) Identification of new SLE-associated genes with a two-step Bayesian study design. Genes Immun 10(5):446–456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Schoenemeyer A, Barnes BJ, Mancl ME, Latz E, Goutagny N, Pitha PM, Fitzgerald KA, Golenbock DT (2005) The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling. J Biol Chem 280(17):17005–17012

    Article  CAS  PubMed  Google Scholar 

  19. Draborg AH, Duus K, Houen G (2012) Epstein–Barr virus and systemic lupus erythematosus. Clin Dev Immunol 2012:370516

    Article  PubMed Central  PubMed  Google Scholar 

  20. Quan TE, Roman RM, Rudenga BJ, Holers VM, Craft JE (2010) Epstein–Barr virus promotes interferon-alpha production by plasmacytoid dendritic cells. Arthritis Rheum 62(6):1693–1701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Martin HJ, Lee JM, Walls D, Hayward SD (2007) Manipulation of the toll-like receptor 7 signaling pathway by Epstein–Barr virus. J Virol 81(18):9748–9758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang Y-H, Homey B, Cao W, Wang Y-H, Su B, Nestle FO, Zal T, Mellman I, Schröder J-M, Liu Y-J, Gilliet M (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449(7162):564–569

    Article  CAS  PubMed  Google Scholar 

  23. Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S, Facchinetti V, Homey B, Barrat FJ, Zal T, Gilliet M (2009) Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med 206(9):1983–1994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. dos Santos BP, Valverde JV, Rohr P, Monticielo OA, Brenol JCT, Xavier RM, Chies JAB (2012) TLR7/8/9 polymorphisms and their associations in systemic lupus erythematosus patients from southern Brazil. Lupus 21(3):302–309

    Article  CAS  PubMed  Google Scholar 

  25. Celhar T, Magalhães R, Fairhurst A-M (2012) TLR7 and TLR9 in SLE: when sensing self goes wrong. Immunol Res 53(1–3):58–77

    Article  CAS  PubMed  Google Scholar 

  26. Komatsuda A, Wakui H, Iwamoto K, Ozawa M, Togashi M, Masai R, Maki N, Hatakeyama T, Sawada K (2008) Up-regulated expression of Toll-like receptors mRNAs in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clin Exp Immunol 152(3):482–487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Thiyagarajan D, Fismen S, Seredkina N, Jacobsen S, Elung-Jensen T, Kamper A-L, Fenton CG, Rekvig OP, Mortensen ES (2012) Silencing of renal DNaseI in murine lupus nephritis imposes exposure of large chromatin fragments and activation of Toll like receptors and the Clec4e. PLoS One 7(3):e34080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Nickerson KM, Christensen SR, Shupe J, Kashgarian M, Kim D, Elkon K, Shlomchik MJ (2010) TLR9 regulates TLR7- and MyD88-dependent autoantibody production and disease in a murine model of lupus. J Immunol 184(4):1840–1848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Santiago-Raber M-L, Dunand-Sauthier I, Wu T, Li Q-Z, Uematsu S, Akira S, Reith W, Mohan C, Kotzin BL, Izui S (2010) Critical role of TLR7 in the acceleration of systemic lupus erythematosus in TLR9-deficient mice. J Autoimmun 34(4):339–348

    Article  CAS  PubMed  Google Scholar 

  30. Miles K, Heaney J, Sibinska Z, Salter D, Savill J, Gray D, Gray M (2012) A tolerogenic role for Toll-like receptor 9 is revealed by B-cell interaction with DNA complexes expressed on apoptotic cells. Proc Natl Acad Sci USA 109(3):887–892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, Schaller JG, Talal N, Winchester RJ (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25(11):1271–1277

    Article  CAS  PubMed  Google Scholar 

  32. Mc H (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40(9):1725

    Google Scholar 

  33. Enevold C, Kjær L, Nielsen CH, Voss A, Jacobsen RS, Hermansen MLF, Redder L, Oturai AB, Jensen PE, Bendtzen K, Jacobsen S (2014) Genetic polymorphisms of dsRNA ligating pattern recognition receptors TLR3, MDA5, and RIG-I. Association with systemic lupus erythematosus and clinical phenotypes. Rheumatol Int. doi:10.1007/s00296-014-3012-4

  34. Avlund K, Osler M, Mortensen EL, Christensen U, Bruunsgaard H, Holm-Pedersen P, Fiehn NE, Hansen AM, Bachkati SH, Meincke RH, Jepsen E, Molbo D, Lund R (2014) Copenhagen Aging and Midlife Biobank (CAMB): an introduction. J Aging Health 26(1):5–20. doi:10.1177/0898264313509277

  35. Enevold C, Oturai AB, Sørensen PS, Ryder LP, Koch-Henriksen N, Bendtzen K (2009) Multiple sclerosis and polymorphisms of innate pattern recognition receptors TLR1-10, NOD1-2, DDX58, and IFIH1. J Neuroimmunol 212(1–2):125–131

    Article  CAS  PubMed  Google Scholar 

  36. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129

    Article  CAS  PubMed  Google Scholar 

  38. Deng Y, Zhao J, Sakurai D, Kaufman KM, Edberg JC, Kimberly RP, Kamen DL, Gilkeson GS, Jacob CO, Scofield RH, Langefeld CD, Kelly JA, Ramsey-Goldman R, Petri MA, Reveille JD, Vilá LM, Alarcón GS, Vyse TJ, Pons-Estel BA, Freedman BI, Gaffney PM, Sivils KM, a James J, Gregersen PK, Anaya J-M, Niewold TB, Merrill JT, Criswell LA, Stevens AM, Boackle SA, Cantor RM, Chen W, Grossman JM, Hahn BH, Harley JB, Alarcόn-Riquelme ME, Brown EE, Tsao BP (2013) MicroRNA-3148 modulates allelic expression of toll-like receptor 7 variant associated with systemic lupus erythematosus. PLoS Genet 9(2):e1003336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Danchenko N, Satia JA, Anthony MS (2006) Epidemiology of systemic lupus erythematosus: a comparison of worldwide disease burden. Lupus 15(5):308–318

    Article  CAS  PubMed  Google Scholar 

  40. Cervantes JL, Dunham-Ems SM, La Vake CJ, Petzke MM, Sahay B, Sellati TJ, Radolf JD, Salazar JC (2011) Phagosomal signaling by Borrelia burgdorferi in human monocytes involves toll-like receptor (TLR) 2 and TLR8 cooperativity and TLR8-mediated induction of IFN-beta. Proc Natl Acad Sci USA 108(9):3683–3688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Davila S, Hibberd ML, Hari Dass R, Wong HEE, Sahiratmadja E, Bonnard C, Alisjahbana B, Szeszko JS, Balabanova Y, Drobniewski F, van Crevel R, van de Vosse E, Nejentsev S, Ottenhoff THM, Seielstad M (2008) Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet 4(10):e1000218

    Article  PubMed Central  PubMed  Google Scholar 

  42. Gantier MP, Irving AT, Kaparakis-Liaskos M, Xu D, Evans VA, Cameron PU, Bourne JA, Ferrero RL, John M, Behlke MA, Williams BRG (2010) Genetic modulation of TLR8 response following bacterial phagocytosis. Hum Mutat 31(9):1069–1079

    Article  CAS  PubMed  Google Scholar 

  43. Oh D-Y, Taube S, Hamouda O, Kücherer C, Poggensee G, Jessen H, Eckert JK, Neumann K, Storek A, Pouliot M, Borgeat P, Oh N, Schreier E, Pruss A, Hattermann K, Schumann RR (2008) A functional toll-like receptor 8 variant is associated with HIV disease restriction. J Infect Dis 198(5):701–709

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Pia Grothe Meinke for technical assistance. We also thank all patients and healthy control subjects for their participation. The Danish Biotechnology Program, Novo Nordisk Foundation, The Danish Rheumatism Association, and The Lundbeck Foundation are thanked for financial support. The Copenhagen Aging and Midlife Biobank has been supported by a generous grant from the VELUX FOUNDATION. The authors wish to thank Prof. Palle Holmstrup for establishing and making possible the project that enabled genotyping of the control samples from the CAMB cohort used herein. The authors thank the staff at the Institute of Public Health and the National Research Center for the Working Environment who undertook the data collection. Further thanks to Helle Bruunsgaard, Nils-Erik Fiehn, Åse Marie Hansen, Poul Holm-Pedersen, Rikke Lund, Erik Lykke Mortensen and Merete Osler who initiated and established the Copenhagen Aging and Midlife Biobank from 2009 to 2011 together with Kirsten Avlund. The authors acknowledge the crucial role of the initiators and steering groups of the Metropolit Cohort, The Copenhagen Perinatal Cohort and The Danish Longitudinal Study on Work Unemployment and Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Enevold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enevold, C., Nielsen, C.H., Jacobsen, R.S. et al. Single nucleotide polymorphisms in genes encoding toll-like receptors 7, 8 and 9 in Danish patients with systemic lupus erythematosus. Mol Biol Rep 41, 5755–5763 (2014). https://doi.org/10.1007/s11033-014-3447-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3447-4

Keywords

Navigation