Skip to main content
Log in

Characterization of 40 single nucleotide polymorphism (SNP) via T m-shift assay in the mud crab (Scylla paramamosain)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In this study, single nucleotide polymorphism (SNP) were identified, confirmed and genotyped in the mud crab (Scylla paramamosain) using T m-shift assay. High quality sequences (13, 311 bp long) were obtained by re-sequencing that contained 91 SNPs, with a density of one SNP every 146 bp. Of all 91 SNPs, 40 were successfully genotyped and characterized using 30 wild specimens by T m-shift assay. The minor allele frequency per locus ranged from 0.017 to 0.500. The observed and expected heterozygosity, and polymorphism information content (PIC) ranged from 0.000 to 0.600, from 0.033 to 0.509, and from 0.033 to 0.375, respectively, with an average of 0.142, 0.239 and 0.198 per locus. Seventeen SNPs were significantly deviated from Hardy–Weinberg equilibrium. No significant linkage disequilibrium between pairs of loci was detected after sequential Bonferroni correction (P > 0.00125). Seventeen SNPs were related with known function genes. This study provided new molecular markers for investigation of population genetic diversity, construction of genetic linkage maps and molecular marker-assisted selection in this important crustacean species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shen Y, Lai Q (1994) Present status of mangrove crab (Scylla serrate (Forskal)) culture in China, NAGA: the ICLARM Quarterly, January 28–29

  2. Fishery Bureau of Ministry of Agriculture of China (2012) China Fisheries Yearbook. Chinese Agricultural Press, Beijing

    Google Scholar 

  3. Ma HY, Ma CY, Ma LB (2011) Population genetic diversity of mud crab (Scylla paramamosain) in Hainan Island of China based on mitochondrial DNA. Biochem Syst Ecol 39:434–440

    Article  CAS  Google Scholar 

  4. Ma HY, Cui HY, Ma CY, Ma LB (2012) High genetic diversity and low differentiation in mud crab (Scylla paramamosain) along the southeastern coast of China revealed by microsatellite markers. J Exp Biol 215:3120–3125

    Article  PubMed  Google Scholar 

  5. Takano M, Barinova A, Sugaya T, Obata Y, Watanabe T, Ikeda M, Taniguchi N (2005) Isolation and characterization of microsatellite DNA markers from mangrove crab, Scylla paramamosain. Mol Ecol Notes 5:794–795

    Article  CAS  Google Scholar 

  6. Xu XJ, Wang GZ, Wang KJ, Li SJ (2009) Isolation and characterization of ten new polymorphic microsatellite loci in the mud crab, Scylla paramamosain. Conserv Genet 10:1877–1878

    Article  CAS  Google Scholar 

  7. Yao HF, Sun DQ, Wang RX, Shi G (2012) Rapid isolation and characterization of polymorphic microsatellite loci in the mud crab, Scylla paramamosain (Portunidae). Genet Mol Res 11:1503–1506

    Article  CAS  PubMed  Google Scholar 

  8. Ma HY, Ma CY, Ma LB (2011) Identification of type I microsatellite markers associated with genes and ESTs in Scylla paramamosain. Biochem Syst Ecol 39:371–376

    Article  CAS  Google Scholar 

  9. Ma HY, Ma CY, Ma LB, Zhang FY (2011) Isolation and characterization of 54 polymorphic microsatellite markers in Scylla paramamosain by FIASCO approach. J World Aquacult Soc 42:591–597

    Article  Google Scholar 

  10. Ma HY, Ma QQ, Ma CY, Ma LB (2011) Isolation and characterization of gene-derived single nucleotide polymorphism (SNP) markers in Scylla paramamosain. Biochem Syst Ecol 39:419–424

    Article  CAS  Google Scholar 

  11. Li S, Wan H, Ji H, Zhou K, Yang G (2009) SNP discovery based on CATS and genotyping in the finless porpoise (Neophocaena phocaenoides). Conserv Genet 10:2013–2019

    Article  CAS  Google Scholar 

  12. Ciobanu DC, Bastiaansen JWM, Magrin J, Rocha JL, Jiang DH, Yu N, Geiger B, Deeb N, Rocha D, Gong H, Konghorn BP, Plastow GS, van der Steen HAM, Mileham AJ (2010) A major SNP resource for dissection of phenotypic and genetic variation in Pacific white shrimp (Litopenaeus vannamei). Anim Genet 41:39–47

    Article  CAS  PubMed  Google Scholar 

  13. Olsen MT, Volny VH, Berube M, Dietz R, Lydersen C, Kovacs K, Dodd R, Palsbøll PJ (2011) A simple route to single-nucleotide polymorphisms in a nonmodel species: identification and characterization of SNPs in the Artic ringed seal (Pusa hispida hispida). Mol Ecol Resour 11(Suppl. 1):9–19

    Article  CAS  PubMed  Google Scholar 

  14. Amish S, Hohenlohe PA, Painter S, Leary RF, Muhlfeld C, Allendorf F, Luikart G (2012) RAD sequencing yields a high success rate for westslope cutthroat and rainbow trout species-diagnostic SNP assays. Mol Ecol Resour 12:653–660

    Article  CAS  PubMed  Google Scholar 

  15. Moen T, Delghand M, Wesmajervi MS, Westgaard JI, Fjalestad KT (2009) A SNP/microsatellite genetic linkage map of the Atlantic cod (Gadus morhua). Anim Genet 40:993–996

    Article  CAS  PubMed  Google Scholar 

  16. Xia JH, Liu F, Zhu ZY, Fu JJ, Feng JB, Li JL, Yue GH (2010) A consensus linkage map of the grass carp (Ctenopharyngodon idella) based on microsatellites and SNPs. BMC Genom 11:135

    Article  Google Scholar 

  17. Kongchum P, Sandel E, Lutzky S, Hallerman EM, Hulata G, David L, Palti Y (2011) Association between IL-10α single nucleotide polymorphisms and resistance to cyprinid herpesvirus-3 infection in common carp (Cyprinus carpio). Aquaculture 315:417–421

    Article  CAS  Google Scholar 

  18. Yu H, He Y, Wang X, Zhang Q, Bao Z, Guo X (2011) Polymorphism in a serine protease inhibitor gene and its association with disease resistance in the eastern oyster (Crassostrea virginica Gmelin). Fish Shellfish Immun 30:757–762

    Article  CAS  Google Scholar 

  19. Jin S, Zhang X, Jia Z, Fu H, Zheng X, Sun X (2012) Genetic linkage mapping and genetic analysis of QTL related to eye cross and eye diameter in common carp (Cyprinus carpio L.) using microsatellites and SNPs. Aquaculture 358–359:176–182

    Article  Google Scholar 

  20. Milano I, Babbucci M, Panitz F, Ogden R, Nielsen RO, Taylor MI, Helyar SJ, Carvalho GR, Espineira M, Atanassova M, Tinti F, Maes GE, Patarnello T, Consortium F, Bargelloni L (2011) Novel tools for conservation genomics: comparing two high-throughput approaches for SNP discovery in the transcriptome of the European hake. PLOS ONE 6:e28008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Helyar SJ, Limborg MT, Bekkevold D, Babbucci M, Houdt J, Maes GE, Bargelloni L, Nielsen RO, Taylor MI, Ogden R, Cariani A, Carvalho GR, Consortium F, Panitz F (2012) SNP discovery using next generation transcriptomic sequencing in Atlantic herring (Clupea harengus). PLoS ONE 7:e42089

    Article  PubMed  Google Scholar 

  22. Ma HY, Yang JF, Su PZ, Chen SL (2009) Genetic analysis of gynogenetic and common populations of Verasper moseri using SSR markers. Wuhan Univ J Nat Sci 14:267–273

    Article  CAS  Google Scholar 

  23. Wang J, Chuang K, Ahluwalia M, Patel S, Umblas N, Mirel D, Higuchi R, Germer S (2005) High-throughtput SNP genotyping by single-tube PCR with T m-shift primers. Biotechniques 39:885–893

    Article  CAS  PubMed  Google Scholar 

  24. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  25. Sobrino S, Lareu M, Brion M, Carracedo A (2004) SNP genotyping with single base extension-tag microarrays. Int Congress Ser 1261:331–333

    Article  CAS  Google Scholar 

  26. Tost J, Gut IG (2005) Genotyping single nucleotide polymorphisms by MALDI mass spectrometry in clinical applications. Clin Biochem 38:335–350

    Article  CAS  PubMed  Google Scholar 

  27. Liu H, Li S, Wang Z, Ji M, Nie L, He N (2007) High-throughput SNP genotyping based on solid-phase PCR on magnetic nanoparticles with dual-color hybridization. J Biotechnol 131:217–222

    Article  CAS  PubMed  Google Scholar 

  28. Matsunaga T, Maruyama K, Takeyama H, Katoh T (2007) High-throughput SNP detection using nano-scale engineered biomagnetite. Biosens Bioelectron 22:2315–2321

    Article  CAS  PubMed  Google Scholar 

  29. Hayford AE, Mammel MK, Lacher DW, Brown EW (2011) Single nucleotide polymorphism (SNP)-based differentiation of Shigella isolates by pyrosequencing. Infect Genet Evol 11:1761–1768

    Article  CAS  PubMed  Google Scholar 

  30. Hansen MH, Young S, Jørgense HH, Pascal C, Henryon M, Seeb J (2011) Assembling a dual purpose TaqMan-based panel of single-nucleotide polymorphism markers in rainbow trout and steelhead (Oncorhynchus mykiss) for association mapping and population genetics analysis. Mol Ecol Resour 11(Suppl. 1):67–70

    Article  CAS  PubMed  Google Scholar 

  31. Bichenkova EV, Lang Z, Yu X, Rogert G, Douglas KT (2011) DNA-mounted self-assembly: new approaches for genomic analysis and SNP detection. BBA-Gene Regul Mech 1809:1–23

    CAS  Google Scholar 

  32. Song MY, Kim HE, Kim S, Choi IH, Lee JK (2012) SNP-based large-scale identification of allele-specific gene expression in human B cells. Gene 493:211–218

    Article  CAS  PubMed  Google Scholar 

  33. Liu W, Li H, Bao X, He C, Li W, Shan Z (2011) The first set of EST-derived single nucleotide polymorphism markers for Japanese scallop, Patinopecten yessoensis. J World Aquacult Soc 42:456–461

    Article  Google Scholar 

  34. Campbell NR, Narum SR (2012) Development of 54 novel single-nucleotide polymorphism (SNP) assays for sockeye and coho salmon and assessment of available SNPs to differentiate stocks within the Columbia River. Mol Ecol Resour 11(Suppl. 1):20–30

    Google Scholar 

  35. Zhang L, Guo X (2010) Development and validation of single nucleotide polymorphism markers in the eastern oyster Crassostrea virginica Gmelin by mining ESTs and resequencing. Aquaculture 302:124–129

    Article  CAS  Google Scholar 

  36. Pante E, Rohfritsch A, Becquet V, Belkhir K, Bierne N, Garcia P (2012) SNP detection from de novo transcriptome sequencing in the bivalve Macoma balthica: marker development for evolutionary studies. PLoS ONE 7:e52302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Elfstrom CM, Gaffney PM, Smith CT, Seeb JE (2005) Characterization of 12 single nucleotide polymorphisms in weathervane scallop. Mol Ecol Notes 5:406–409

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Non-Profit Institutes (East China Sea Fisheries Research Institute) (No. 2011M05), the National Natural Science Foundation of China (No. 31001106), the Science and Technology Commission of Shanghai Municipality (No. 10JC1418600) and the National Infrastructure of Fishery Germplasm Resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyu Ma or Lingbo Ma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, N., Ma, H., Ma, C. et al. Characterization of 40 single nucleotide polymorphism (SNP) via T m-shift assay in the mud crab (Scylla paramamosain). Mol Biol Rep 41, 5467–5471 (2014). https://doi.org/10.1007/s11033-014-3420-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3420-2

Keywords

Navigation