Skip to main content

Advertisement

Log in

Differential expression of genes and proteins associated with wool follicle cycling

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Sheep are valuable resources for the wool industry. Wool growth of Aohan fine wool sheep has cycled during different seasons in 1 year. Therefore, identifying genes that control wool growth cycling might lead to ways for improving the quality and yield of fine wool. In this study, we employed Agilent sheep gene expression microarray and proteomic technology to compare the gene expression patterns of the body side skins at August and December time points in Aohan fine wool sheep (a Chinese indigenous breed). Microarray study revealed that 2,223 transcripts were differentially expressed, including 1,162 up-regulated and 1,061 down-regulated transcripts, comparing body side skin at the August time point to the December one (A/D) in Aohan fine wool sheep. Then seven differentially expressed genes were selected to validated the reliability of the gene chip data. The majority of the genes possibly related to follicle development and wool growth could be assigned into the categories including regulation of receptor binding, extracellular region, protein binding and extracellular space. Proteomic study revealed that 84 protein spots showed significant differences in expression levels. Of the 84, 63 protein spots were upregulated and 21 were downregulated in A/D. Finally, 55 protein points were determined through MALDI-TOF/MS analyses. Furthermore, the regulation mechanism of hair follicle might resemble that of fetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Janich P, Pascual G, Merlos-Suarez A, Batlle E, Ripperger J, Albrecht U, Obrietan K, Di Croce L, Benitah SA (2011) The circadian molecular clock creates epidermal stem cell heterogeneity. Nature 480:209–214

    Article  CAS  PubMed  Google Scholar 

  2. Rhee H, Polak L, Fuchs E (2006) Lhx2 maintains stem cell character in hair follicles. Science 312:1946–1949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Cotsarelis G (2006) Gene expression profiling gets to the root of human hair follicle stem cells. J Clin Invest 116:19–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ohyama M, Terunuma A, Tock CL, Radonovich MF, Pise-Masison CA, Hopping SB, Brady JN, Udey MC, Vogel JC (2006) Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J Clin Invest 116:249–260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Wenguang Z, Jianghong W, Jinquan L, Yashizawa M (2007) A subset of skin-expressed microRNAs with possible roles in goat and sheep hair growth based on expression profiling of mammalian microRNAs. OMICS 11:385–396

    Article  PubMed  Google Scholar 

  6. Yu Z-D, Bawden CS, Henderson HV, Nixon AJ, Gordon SW, Pearson AJ (2006) Micro-arrays as a discovery tool for wool genomics. Proc NZ Soc Anim Prod 66:129–133

    Google Scholar 

  7. Yu Z-D, Gordon SW, Pearson AJ, Henderson HV, Craven AJ, Nixon AJ (2008) Gene expression profiling of wool follicle growth cycles by cDNA microarray. Proc NZ Soc Anim Prod 68:39–42

    Google Scholar 

  8. Norris BJ, Bower NI, Smith WJ, Cam GR, Reverter A (2005) Gene expression profiling of ovine skin and wool follicle development using a combined ovine–bovine skin cDNA microarray. Aust J Exp Agric 45:867–877

    Article  CAS  Google Scholar 

  9. Penagaricano F, Zorrilla P, Naya H, Robello C, Urioste JI (2012) Gene expression analysis identifies new candidate genes associated with the development of black skin spots in Corriedale sheep. J Appl Genet 53:99–106

    Article  CAS  PubMed  Google Scholar 

  10. Smith WJ, Li Y, Ingham A, Collis E, McWilliam SM, Dixon TJ, Norris BJ, Mortimer SI, Moore RJ, Reverter A (2010) A genomics-informed, SNP association study reveals FBLN1 and FABP4 as contributing to resistance to fleece rot in Australian Merino sheep. BMC Vet Res 6:27

    Article  PubMed Central  PubMed  Google Scholar 

  11. Bongiorni S, Chillemi G, Prosperini G, Bueno S, Valentini A, Pariset L (2009) A tool for sheep product quality: custom microarrays from public databases. Nutrients 1:235–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Faucon F, Rebours E, Bevilacqua C, Helbling JC, Aubert J, Makhzami S, Dhorne-Pollet S, Robin S, Martin P (2009) Terminal differentiation of goat mammary tissue during pregnancy requires the expression of genes involved in immune functions. Physiol Genom 40:61–82

    Article  CAS  Google Scholar 

  13. Ollier S, Robert-Granie C, Bernard L, Chilliard Y, Leroux C (2007) Mammary transcriptome analysis of food-deprived lactating goats highlights genes involved in milk secretion and programmed cell death. J Nutr 137:560–567

    CAS  PubMed  Google Scholar 

  14. Keane OM, Zadissa A, Wilson T, Hyndman DL, Greer GJ, Baird DB, McCulloch AF, Crawford AM, McEwan JC (2006) Gene expression profiling of naive sheep genetically resistant and susceptible to gastrointestinal nematodes. BMC Genom 7:42

    Article  Google Scholar 

  15. MacKinnon KM, Burton JL, Zajac AM, Notter DR (2009) Microarray analysis reveals difference in gene expression profiles of hair and wool sheep infected with Haemonchus contortus. Vet Immunol Immunopathol 130:210–220

    Article  CAS  PubMed  Google Scholar 

  16. Dong Y, Xie M, Jiang Y, Xiao NQ, Du XY, Zhang WG, Tosser-Klopp G, Wang JH, Yang S, Liang J, Chen WB et al (2013) Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat Biotechnol 32(2):135–141

    Google Scholar 

  17. Wang HR, Feng ZC, Du M, Ren JK, Li HR (1994) Initial research for seasonal variation of wool growth of Aohan fine wool sheep. Inner Mong Anim Sci 3:1–3 (in Chinese)

    CAS  Google Scholar 

  18. Yu JJ, Liu JF, Zhao JS, Cheng M, Liu KD, Liu N (2012) Gene chip analysis of expression pattern of type I inner root sheath (IRS) keratin in Aohan wool sheep. Agric Sci Technol 13:1171–1174

    CAS  Google Scholar 

  19. Zhao JS, Li HG, Liu KD, Liu N, Li JQ (2012) Differential expression of immune genes between body side skin and groin skin of Aohan fine wool sheep. Agric Sci Technol 13:2475–2479

    CAS  Google Scholar 

  20. Stenn KS, Paus R (2001) Controls of hair follicle cycling. Physiol Rev 81:449–494

    CAS  PubMed  Google Scholar 

  21. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  22. Berndt P, Hobohm U, Langen H (1999) Reliable automatic protein identification from matrix-assisted laser desorption/ionization mass spectrometric peptide fingerprints. Electrophoresis 20:3521–3526

    Article  CAS  PubMed  Google Scholar 

  23. Jones PH, Watt FM (1993) Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73:713–724

    Article  CAS  PubMed  Google Scholar 

  24. Kloepper JE, Hendrix S, Bodo E, Tiede S, Humphries MJ, Philpott MP, Fassler R, Paus R (2008) Functional role of beta 1 integrin-mediated signalling in the human hair follicle. Exp Cell Res 314:498–508

    Article  CAS  PubMed  Google Scholar 

  25. Brakebusch C, Grose R, Quondamatteo F, Ramirez A, Jorcano JL, Pirro A, Svensson M, Herken R, Sasaki T, Timpl R et al (2000) Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes. EMBO J 19:3990–4003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ryu K, Yokoyama M, Yamashita M, Hirano T (2012) Induction of excitatory and inhibitory presynaptic differentiation by GluD1. Biochem Biophys Res Commun 417:157–161

    Article  CAS  PubMed  Google Scholar 

  27. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176

    Article  CAS  PubMed  Google Scholar 

  28. Magdaleno S, Jensen P, Brumwell CL, Seal A, Lehman K, Asbury A, Cheung T, Cornelius T, Batten DM, Eden C et al (2006) BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system. PLoS Biol 4:e86

    Article  PubMed Central  PubMed  Google Scholar 

  29. Churko JM, Chan J, Shao Q, Laird DW (2011) The G60S connexin43 mutant regulates hair growth and hair fiber morphology in a mouse model of human oculodentodigital dysplasia. J Invest Dermatol 131:2197–2204

    Article  CAS  PubMed  Google Scholar 

  30. Umeda-Ikawa A (2009) Time-course expression profiles of hair cycle-associated genes in male mini rats after depilation of telogen-phase hairs. Int J Mol Sci 10:1967–1977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Powell BC, Beltrame JS (1994) Characterization of a hair (wool) keratin intermediate filament gene domain. J Invest Dermatol 102:171–177

    Article  CAS  PubMed  Google Scholar 

  32. Yu Z, Gordon SW, Nixon AJ, Bawden CS, Rogers MA, Wildermoth JE, Maqbool NJ, Pearson AJ (2009) Expression patterns of keratin intermediate filament and keratin associated protein genes in wool follicles. Differentiation 77:307–316

    Article  PubMed  Google Scholar 

  33. Goh BK, Common JE, Gan WH, Kumarasinghe P (2009) A case of dermatopathia pigmentosa reticularis with wiry scalp hair and digital fibromatosis resulting from a recurrent KRT14 mutation. Clin Exp Dermatol 34:340–343

    Article  CAS  PubMed  Google Scholar 

  34. Lugassy J, Itin P, Ishida-Yamamoto A, Holland K, Huson S, Geiger D, Hennies HC, Indelman M, Bercovich D, Uitto J et al (2006) Naegeli–Franceschetti–Jadassohn syndrome and dermatopathia pigmentosa reticularis: two allelic ectodermal dysplasias caused by dominant mutations in KRT14. Am J Hum Genet 79:724–730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Horner ME, Parkinson KE, Kaye V, Lynch PJ (2011) Dowling-Degos disease involving the vulva and back: case report and review of the literature. Dermatol Online J 17:1

    PubMed  Google Scholar 

  36. Lueking A, Huber O, Wirths C, Schulte K, Stieler KM, Blume-Peytavi U, Kowald A, Hensel-Wiegel K, Tauber R, Lehrach H et al (2005) Profiling of alopecia areata autoantigens based on protein microarray technology. Mol Cell Proteomics 4:1382–1390

    Article  CAS  PubMed  Google Scholar 

  37. Rosenquist TA, Martin GR (1996) Fibroblast growth factor signalling in the hair growth cycle: expression of the fibroblast growth factor receptor and ligand genes in the murine hair follicle. Dev Dyn 205:379–386

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Prof. Yinlin Ge for technical assistance. This research was supported by the Project of National Hair Sheep Industry Technology System (CARS-40) and the Project of Qingdao People’s Livelihood Science and Technology (13-1-3-88-nsh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinshan Zhao.

Additional information

Nan Liu and Hegang Li contributed equally to this paper.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Li, H., Liu, K. et al. Differential expression of genes and proteins associated with wool follicle cycling. Mol Biol Rep 41, 5343–5349 (2014). https://doi.org/10.1007/s11033-014-3405-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3405-1

Keywords

Navigation