Skip to main content

Advertisement

Log in

Molecular cloning and characterization of NPR1 gene from Arachis hypogaea

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The NPR1 gene was an important regulator for a plant disease resistance. The cDNA of NPR1 gene was cloned from peanut cultivar Ri Hua 1 by rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The full length cDNA of Arachis hypogaea NPR1 consisted of 2,078 base pairs with a 1,446 bp open-reading frame encoding 481 amino acids. The predicted NPR1 contained the highly conserved functional domains (BTB/POZ domain from M1 to D116), protein–protein interaction domains (three ankyrin repeats from K158 to L186; N187 to L217 and R221 to D250) and one NPR1-like domain (C262 to S469). The DNA sequence of the NPR1 gene was 2,332 or 2,223 bp. Both two sequences contained three introns and four exons. The NPR1 transcripts were expressed mainly in roots and leaves, while fewer signals were detected in the stems. Amount of the NPR1 transcript was significantly increased 1 h after salicylic acid challenge and was eventually 5.3 times greater than that in the control group. Both the DNA sequence and the coding sequence were obtained from eight cultivars and nine wild species of Arachis. Maximum likelihood analyses of d N/d S ratios for 25 sequences from different species showed that different selection pressures may have acted on different branches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

bp:

Base pair

BW:

Bacterial wilt

df:

Degrees of freedom

EST:

Expressed sequence tag

LRT:

Likelihood ratio test

NPR1 :

Nonexpressor of pathogenesis-related genes1

PR genes:

Pathogenesis-related genes

qRT-PCR:

Quantitative real-time reverse transcription polymerase chain reaction

RT-PCR:

Reverse transcription polymerase chain reaction

SA:

Salicylic acid

SAR:

Systemic acquired resistance

UTR:

Untranslated region

TGA:

Leucine zipper transcription factor TGA

TUA:

Alpha-tubulin

References

  1. Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  Google Scholar 

  2. Vlot AC, Klessig DF, Park SW (2008) Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11:436–442

    Article  CAS  PubMed  Google Scholar 

  3. Mukhtar FB, Mohammed M, Ajeigbe AH (2009) Effect of benzyl amino purine (BAP), coconut milk (CM) and manure applications on leaf senescence and yield in photoperiod sensitive cowpea variety (Kanannado). Afr J Plant Sci 3:142–146

    Google Scholar 

  4. Loake G, Grant M (2007) Salicylic acid in plant defence-the players and protagonists. Curr Opin Plant Biol 10:466–472

    Article  CAS  PubMed  Google Scholar 

  5. Sels J, Mathys J, De Coninck BM et al (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950

    Article  CAS  PubMed  Google Scholar 

  6. Le Henanff G, Heitz T, Mestre P et al (2009) Characterization of Vitis vinifera NPR1 homologs involved in the regulation of pathogenesis-related gene expression. BMC Plant Biol 9:54

    Article  PubMed Central  PubMed  Google Scholar 

  7. Chen XK, Zhang JY, Zhang Z et al (2012) Overexpressing MhNPR1 in transgenic Fuji apples enhances resistance to apple powdery mildew. Mol Biol Rep 39:8083–8089

    Article  CAS  PubMed  Google Scholar 

  8. Stein E, Molitor A, Kogel KH et al (2008) Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 49:1747–1751

    Article  CAS  PubMed  Google Scholar 

  9. Wang D, Weaver ND, Kesarwani M et al (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Science 308:1036–1040

    Article  CAS  PubMed  Google Scholar 

  10. Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151

    Article  PubMed Central  PubMed  Google Scholar 

  11. Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate–salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  12. Le Henanff G, Farine S, Kieffer-Mazet F et al (2011) Vitis vinifera VvNPR1.1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew. Planta 234:405–417

    Article  CAS  PubMed  Google Scholar 

  13. Shi Z, Maximova SN, Liu Y et al (2010) Functional analysis of the Theobroma cacao NPR1 gene in Arabidopsis. BMC Plant Biol 10:248

    Article  PubMed Central  PubMed  Google Scholar 

  14. Stogios PJ, Downs GS, Jauhal JJ et al (2005) Sequence and structural analysis of BTB domain proteins. Genome Biol 6:R82

    Article  PubMed Central  PubMed  Google Scholar 

  15. Trujillo M, Shirasu K (2010) Ubiquitination in plant immunity. Curr Opin Plant Biol 13:402–408

    Article  CAS  PubMed  Google Scholar 

  16. FAOSTAT (2006) http://www.faostatfaoorg/site/567/defaultaspx

  17. Luo M, Liang XQ, Dang P et al (2005) Microarray-based screening of differentially expressed genes in peanut in response to Aspergillus parasiticus infection and drought stress. Plant Sci 169:695–703

    Article  CAS  Google Scholar 

  18. Holbrook CC, Stalker HT (2002) Peanut breeding and genetic resources. Plant Breed Rev 22:297–356

    Google Scholar 

  19. Guo AY, He K, Liu D et al (2005) DATF: a database of Arabidopsis transcription factors. Bioinformatics 21:2568–2569

    Article  CAS  PubMed  Google Scholar 

  20. Leal-Bertioli SCM, Jose ACVF, Alves-Freitas DMT et al (2009) Identification of candidate genome regions controlling disease resistance in Arachis. BMC Plant Biol 9:112

    Article  PubMed Central  PubMed  Google Scholar 

  21. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  22. Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Rozas J, Sanchez-DelBarrio JC, Messeguer X et al (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  24. Yang ZH, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19:908–917

    Article  CAS  PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  26. Phelps CB, Wang RR, Choo SS et al (2010) Differential regulation of TRPV1, TRPV3, and TRPV4 sensitivity through a conserved binding site on the ankyrin repeat domain. J Biol Chem 285:731–740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Sklenovsy P, Otyepka M (2010) In silico structural and functional analysis of fragments of the ankyrin repeat protein p18(INK4c). J Biomol Struct Dyn 27:521–540

    Article  CAS  PubMed  Google Scholar 

  28. Nielsen R, Yang ZH (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Yang Z, Wong WS, Nielsen R (2005) Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  CAS  PubMed  Google Scholar 

  30. Hurst LD (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 18:486–487

    Article  PubMed  Google Scholar 

  31. Cao H, Glazebrook J, Clarke JD et al (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    Article  CAS  PubMed  Google Scholar 

  32. Ding K, Kullo IJ (2006) Molecular evolution of 5′ flanking regions of 87 candidate genes for atherosclerotic cardiovascular disease. Genet Epidemiol 30:557–569

    Article  PubMed  Google Scholar 

  33. Kullo IJ, Ding KY (2007) Patterns of population differentiation of candidate genes for cardiovascular disease. BMC Genet 8:48

    Article  PubMed Central  PubMed  Google Scholar 

  34. Thomas JW, Touchman JW, Blakesley RW et al (2003) Comparative analyses of multi-species sequences from targeted genomic regions. Nature 424:788–793

    Article  CAS  PubMed  Google Scholar 

  35. Zhang JZ, Nielsen R, Yang ZH (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479

    Article  CAS  PubMed  Google Scholar 

  36. Anisimova M, Bielawski JP, Yang ZH (2001) Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18:1585–1592

    Article  CAS  PubMed  Google Scholar 

  37. Armour JA (2006) Tandemly repeated DNA: why should anyone care? Mutat Res 598:6–14

    Article  CAS  PubMed  Google Scholar 

  38. Swanson WJ, Vacquier VD (2002) The rapid evolution of reproductive proteins. Nat Rev Genet 3:137–144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to all the laboratory members for continuous technical advice and helpful discussion. This research was supported from China Agricultural Research System (CARS-14), Qingdao Science and Technology plan Basic research Project (12-1-4-11-(1)-jch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Tang Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix S1 Fig. S1 Multiple alignment of NPR1 sequences from A. hypogaea cultivar, Ri Hua 1 (DOC 101 kb)

11033_2014_3395_MOESM2_ESM.doc

Appendix S2 Fig. S2 Ratios of d N/d S for NPR1 for the indicated branches. The ω values of each branch were the result of the free ratio model. A ω < 1 indicates that a purifying selection or a relaxed selective constraint has acted along that lineage. ‘Inf’ indicates infinity. Nodes marked with ‘1’ ‘2’ or ‘3’ mean that the clades have been tested by the branch site model A. The three clades represent the lineage of genus Arachis and the two dicotyledon clades, respectively. (DOC 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Wang, X.Z., Tang, Y.Y. et al. Molecular cloning and characterization of NPR1 gene from Arachis hypogaea . Mol Biol Rep 41, 5247–5256 (2014). https://doi.org/10.1007/s11033-014-3395-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3395-z

Keywords

Navigation