Skip to main content

Advertisement

Log in

Differential soybean gene expression during early phase of infection with Mungbean yellow mosaic India virus

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Mungbean yellow mosaic India virus (MYMIV), a bipartite begomovirus, causes yellow mosaic disease to soybean. Studies related to host gene expression in response to begomovirus infection have mostly been performed with systemically infected tissues at a later period of infection. In this study, soybean gene expression analysis has been performed to understand local responses against MYMIV at an early stage of infection before appearance of detectable limit of late viral transcripts. 444 soybean transcripts belonging to eleven functional categories showed significant changes in expression level at two days after infection. MYMIV infection resulted in enhanced expression of genes associated with hypersensitive response, programmed cell death and resistance response pathways and reduced expression of genes for photosynthesis and sugar transport. Comparative expression analysis of selected transcripts in the susceptible and a resistant variety displayed differential expression of host genes involved in intercellular virus movement and long distance signaling of systemic acquired resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Whitham SA, Yang C, Goodin MM (2006) Global Impact: elucidating plant responses to viral infection. Mol Plant Microbe Ineract 19:1207–1215

    Article  CAS  Google Scholar 

  2. Ascencio-Ibáñez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD et al (2008) Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 148:436–454

    Article  PubMed Central  PubMed  Google Scholar 

  3. Postnikova OA, Nemchinov LG (2012) Comparative analysis of microarray data in Arabidopsis transcriptome during compatible interactions with plant viruses. Virol J 9:101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Pierce EJ, Rey MEC (2013) Assessing global transcriptome changes in response to South African Cassava Mosaic Virus [ZA-99] infection in susceptible Arabidopsis thaliana. PLoS ONE 8:e67534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Chapman EJ, Prokhnevsky AI, Gopinath K, Dolja VV, Carrington JC (2004) Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev 18:1179–1186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakeley EJ et al (2005) Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 79:2517–2527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kong LJ, Hanley-Bowdoin L (2002) A geminivirus replication protein interacts with a protein kinase and a motor protein that display different expression patterns during plant development and infection. Plant Cell 14:1817–1832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Selth LA, Dogra SC, Rasheed MS, Healy H, Randles JW et al (2005) A NAC domain protein interacts with Tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17:311–325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Sánchez-Durán MA, Dallas MB, Ascencio-Ibañez JT, Reyes MI, Arroyo-Mateos M, Ruiz-Albert J, Hanley-Bowdoin L, Bejarano ER (2011) Interaction between geminivirus replication protein and the SUMO-conjugating enzyme is required for viral infection. J Virol 85:9789–9800

    Article  PubMed Central  PubMed  Google Scholar 

  10. Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  CAS  PubMed  Google Scholar 

  11. Ishihara T, Sakurai N, Sekine KT, Hase S, Ikegami M et al (2004) Comparative analysis of expressed sequence tags in resistant and susceptible ecotypes of Arabidopsis thaliana infected with cucumber mosaic virus. Plant Cell Physiol 45:470–480

    Article  CAS  PubMed  Google Scholar 

  12. Marathe R, Guan Z, Anandalakshmi R, Zhao H, Dinesh-Kumar SP (2004) Study of Arabidopsis thaliana in response to cucumber mosaic virus infection using whole genome microarray. Plant Mol Biol 55:501–520

    Article  CAS  PubMed  Google Scholar 

  13. Babu M, Griffiths JS, Huang TS, Wang A (2008) Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection. BMC Genom 9:325

    Article  Google Scholar 

  14. Boulton MI (2003) Geminiviruses: major threats to world agriculture. Ann Appl Biol 142:143

    Article  Google Scholar 

  15. Varma A, Malathi VG (2003) Emerging geminivirus problems: a serious threat to crop production. Ann Appl Biol 142:145–164

    Article  CAS  Google Scholar 

  16. Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (2000) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol 35:105–140

    CAS  Google Scholar 

  17. Usharani KS, Surendranath B, Haq QMR, Malathi VG (2005) Infectivity analysis of a soybean isolate of Mungbean yellow mosaic India virus by agroinoculation. J Gen Plant Pathol 71:230–237

    Article  CAS  Google Scholar 

  18. Jacob SS, Vanitharani R, Karthikeyan AS, Chinchore Y, Thillaichidambaram P et al (2003) Mungbean yellow mosaic virus-Vi agroinfection by codelivery of DNA A and DNA B from one Agrobacterium strain. Plant Dis 87:247–251

    Article  CAS  Google Scholar 

  19. Naqvi AR, Sarwat M, Pradhan B, Choudhury NR, Haq QM et al (2011) Differential expression analyses of host genes involved in systemic infection of Tomato leaf curl New Delhi virus (ToLCNDV). Virus Res 160:395–399

    Article  CAS  PubMed  Google Scholar 

  20. Singh BB, Malick AS (1978) Inheritance of resistance to yellow mosaic in soybean. Indian J Genet Plant Breed 38:258–261

    Google Scholar 

  21. Ramteke R, Gupta GK (2005) Field screening of soybean, Glycine max (L.) Merrill. lines for resistance to yellow mosaic virus. J Oilseeds Res 22:224–225

    Google Scholar 

  22. Yadav RK, Shukla RK, Chattopadhyay D (2009) Soybean cultivar resistant to Mungbean Yellow Mosaic India Virus infection induces viral RNA degradation earlier than the susceptible cultivar. Virus Res 144:89–95

    Article  CAS  PubMed  Google Scholar 

  23. Yadav RK, Chattopadhyay D (2011) Enhanced viral intergenic region-specific short interfering RNA accumulation and DNA methylation correlates with resistance against a geminivirus. Mol Plant Microbe In 24:1189–1197

    Article  CAS  Google Scholar 

  24. Sahu PP, Rai NK, Chakraborty S, Singh M, Chandrappa PH et al (2010) Tomato cultivar tolerant to Tomato leaf curl New Delhi virus infection induces virus-specific short interfering RNA accumulation and defence-associated host gene expression. Mol Plant Pathol 11:531–544

    Article  CAS  PubMed  Google Scholar 

  25. Uzarowska A, Dionisio G, Sarholz B et al (2009) Validation of candidate genes putatively associated with resistance to SCMV and MDMV in maize (Zea mays L.) by expression profiling. BMC Plant Biol 9:15

    Article  PubMed Central  PubMed  Google Scholar 

  26. Lim PO, Nam HG (2005) The molecular and genetic control of leaf senescence and longevity in Arabidopsis. Curr Top Dev Biol 67:49–83

    Article  CAS  PubMed  Google Scholar 

  27. Espinoza C, Medina C, Somerville S, Arce-Johnson P (2007) Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis. J Exp Bot 58:3197–3212

    Article  CAS  PubMed  Google Scholar 

  28. Lai J, Chen H, Teng K, Zhao Q, Zhang Z, Li Y, Liang L, Xia R, Wu Y, Guo H, Xie Q (2009) RKP, a ring finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle. Plant J 57:905–917

    Article  CAS  PubMed  Google Scholar 

  29. Lozano-Durán R, Rosas-Diaz T, Luna AP, Bejanaro ER (2011) Identification of host genes involved in gemenivirus infection using a reverse genetic approach. PLoS ONE 6:e22383

    Article  PubMed Central  PubMed  Google Scholar 

  30. Suzuki N, Miller G, Morales J, Shulaev V, Torres MA et al (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  CAS  PubMed  Google Scholar 

  31. Almagro L, Gomez-Ros LV, Belchi-Navarro S et al (2008) Class III peroxidases in plant defence reaction. J Exp Bot 60:377–390

    Article  PubMed  Google Scholar 

  32. Zurbriggen MD, Carrillo N, Hajirezaei MR (2010) ROS signaling in the hypersensitive response. Plant Sig Behav 5:393–396

    Article  CAS  Google Scholar 

  33. Kolomiets MV, Chen H, Gladon RJ, Braun EJ, Hannapel DJ (2000) A leaf lipoxygenase of potato induced specifically by pathogen infection. Plant Physiol 124:1121–1130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Babu M, Gagarinova AG, Brandle JE, Wang A (2008) Association of the transcriptional response of soybean plants with Soybean mosaic virus systemic infection. J Gen Virol 89:1069–1080

    Article  CAS  PubMed  Google Scholar 

  35. Melillo MT, Bleve-Zacheo T, Zacheo G, Perrino P (1990) Morphology and enzyme histochemistry in germplasm pea root attacked by Heterodera goettingiana. Nematol Medit 18:3–91

    Google Scholar 

  36. Hernãndez JA, Rubio M, Olmos E, Ros-Barcelo A, Martinez-Gomez P (2004) Oxidative stress induced by long-term plum pox virus infection in peach (Prunus persica). Physiol Plant 122:486–495

    Article  Google Scholar 

  37. Sandermann H (2000) Active oxygen species as mediators of plant immunity: three case studies. Biol Chem 381:649–653

    Article  CAS  PubMed  Google Scholar 

  38. Xu HX, Heath MC (1998) Role of calcium in signal transduction during the hypersensitive response caused by basidiospore-derived infection of the cowpea rust fungus. Plant Cell 10:585–597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Liu YL, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429

    Article  CAS  PubMed  Google Scholar 

  40. Heller G, Adomas A, Li G, Osborne J, van Zyl L et al (2008) Transcriptional analysis of Pinus sylvestris roots challenged with the ectomycorrhizal fungus Laccaria bicolor. BMC Plant Biol 8:19

    Article  PubMed Central  PubMed  Google Scholar 

  41. Goellner M, Wang X, Davis EL (2001) Endo-b-1,4-glucanase expression in compatible plant-nematode interactions. Plant Cell 13:2241–2256

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Gou JY, Miller LM, Hou G, Yu XH, Chen XY, Liu CJ (2012) Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. Plant Cell 24:50–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Vercauteren I, Engler JDA, de Groodt RD, Gheysen G (2002) An Arabidopsis thaliana pectin acetylesterase gene is upregulated in nematode feeding sites induced by root-knot and cyst nematode. Mol Plant Microbe Interact 15:404–407

    Article  CAS  PubMed  Google Scholar 

  44. Yang C, Guo R, Jie F, Nettleton D, Peng J, Carr T, Yeakley JM, Fan JB, Whitham SA (2007) Spatial analysis of Arabidopsis thaliana gene expression in response to turnip mosaic virus infection. Mol Plant Microbe Ineract 20:358–370

    Article  CAS  Google Scholar 

  45. Chen MH, Sheng J, Hind G, Handa AK, Citovsky V (2000) Interaction between the Tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J 19:913–920

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Chen MH, Citovsky V (2003) Systemic movement of a tobamovirus requires host cell pectin methylesterase. Plant J 35:386–392

    Article  CAS  PubMed  Google Scholar 

  47. Lionetti V, Raiola A, Camardella L, Giovane A, Obel N, Pauly M, Favaron F, Cervone F, Bellincampi D (2007) Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol 143:1871–1880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Chassot C, Nawrath C, Metraux JP (2008) The cuticle: not only a barrier for plant defence: a novel defence syndrome in plants with cuticular defects. Plant Signal Behav 3:142–144

    Article  PubMed Central  PubMed  Google Scholar 

  49. Li F, Wu X, Lam P, Bird D, Zheng H, Samuels L, Jetter R, Kunst L (2008) Identification of the Wax exter synthase/Acyl-Coenzyme A: Diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Phys 148:97–107

    Article  CAS  Google Scholar 

  50. Todd J, Post-Beittenmiller D, Jaworski JG (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17:119–130

    Article  CAS  PubMed  Google Scholar 

  51. Aranda M, Maule A (1998) Virus-induced host gene shutoff in animals and plants. Virology 243:261–267

    Article  CAS  PubMed  Google Scholar 

  52. Dubos C, Stracke R, Grotewold E et al (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  53. Vailleau F, Daniel X, Tronchet M et al (2002) A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proc Natl Acad Sci USA 99:10179–10184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399–403

    Article  CAS  PubMed  Google Scholar 

  55. Mann RS (2011) Bemisia tabaci interaction with Cotton leaf curl virus. Thompson WMO. (Ed.) The whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) Interaction with Geminivirus-infected host plant. Springer Science + Business Media. pp. 69–88

  56. Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Bell E, Mullet JE (1991) Lipoxygenase gene expression is modulated in plants by water deficit, wounding and methyl jasmonate. Mol Gen Genet 230:456–462

    Article  CAS  PubMed  Google Scholar 

  58. Thibaud-Nissen F, Shealy RT, Khanna A, Voldkin LO (2003) Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Moy P, Qutob D, Chapman BP, Atkinson I, Gijzen M (2004) Patterns of gene expression upon infection of soybean plants by Pytopthera sojae. Mol Plant Microbe Interact 17:1051–1062

    Article  CAS  PubMed  Google Scholar 

  60. Ditt RF, Nester E, Comai L (2001) Plant gene expression response to Agrobacterium tumefaciens. Proc Natl Acad Sci USA 98:10954–10959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Veena JiangH, Doerge RW, Gelvin SB (2003) Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J 35:219–236

    Article  CAS  PubMed  Google Scholar 

  62. Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The project was funded by a seed grant of National Institute of Plant Genome Research (NIPGR), New Delhi, India. RKY acknowledges Council of Scientific and Industrial Research, India and NIPGR for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Chattopadhyay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

List of ESTs differentially expressed in susceptible soybean variety JS335 at 2 dpi after agroinoculation with a virulent clone of MYMIV (Fold change ≥ 2.0, p value ≤ 0.05). ESTs with expression increased or decreased in comparison to the mock-inoculated samples are listed separately (XLS 151 kb)

Online Resource 2

(PDF 94 kb)

Online Resource 3

(PDF 96 kb)

Online Resource 4

(PDF 639 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R.K., Chattopadhyay, D. Differential soybean gene expression during early phase of infection with Mungbean yellow mosaic India virus . Mol Biol Rep 41, 5123–5134 (2014). https://doi.org/10.1007/s11033-014-3378-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3378-0

Keywords

Navigation