Skip to main content
Log in

Hec1 inhibition alters spindle morphology and chromosome alignment in porcine oocytes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Aneuploidy is caused by incorrect chromosome segregation and can result in cancer or birth defects. The spindle assembly checkpoint (SAC) guarantees proper cell cycle progression. Highly Expressed in Cancer protein 1 (Hec1, also called Ndc80) is the core component of the Ndc80 complex and is involved in regulating both kinetochore-microtubule interactions and the SAC during mitosis in multiple cell types. However, its involvement in pig oocyte meiotic maturation remains uncertain. Thus, we investigated Hec1 expression, localization, and possible functions during porcine oocyte meiosis. Immunofluorescent staining showed that Hec1 was expressed in porcine oocytes and was associated with centromeres at both the metaphase I and metaphase II stages. Disrupting Hec1 function with its inhibitor INH1 resulted in polar body extrusion defects in porcine oocytes. Moreover, inhibiting Hec1 activity also resulted in severe chromosome misalignments and aberrant spindle morphology. Our results showed a unique localization pattern for Hec1 in porcine oocytes and suggested that Hec1 was required for chromosome alignment and spindle organization. Thus, Hec1 might regulate spindle checkpoint activity during mammalian oocyte meiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zheng L, Chen Y, Lee WH (1999) Hec1p, an evolutionarily conserved coiled-coil protein, modulates chromosome segregation through interaction with SMC proteins. Mol Cell Biol 19:5417–5428

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Bharadwaj R, Qi W, Yu H (2004) Identification of two novel components of the human NDC80 kinetochore complex. J Biol Chem 279:13076–13085

    Article  CAS  PubMed  Google Scholar 

  3. Guimaraes GJ, Dong Y, McEwen BF, Deluca JG (2008) Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1. Curr Biol 18:1778–1784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Miller SA, Johnson ML, Stukenberg PT (2008) Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1). Curr Biol 18:1785–1791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Hori T, Haraguchi T, Hiraoka Y, Kimura H, Fukagawa T (2003) Dynamic behavior of Nuf2-Hec1 complex that localizes to the centrosome and centromere and is essential for mitotic progression in vertebrate cells. J Cell Sci 116:3347–3362

    Article  CAS  PubMed  Google Scholar 

  6. McCleland ML, Kallio MJ, Barrett-Wilt GA, Kestner CA, Shabanowitz J, Hunt DF, Gorbsky GJ, Stukenberg PT (2004) The vertebrate Ndc80 complex contains Spc24 and Spc25 homologs, which are required to establish and maintain kinetochore-microtubule attachment. Curr Biol 14:131–137

    Article  CAS  PubMed  Google Scholar 

  7. DeLuca JG, Dong Y, Hergert P, Strauss J, Hickey JM, Salmon ED, McEwen BF (2005) Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol Biol Cell 16:519–531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ciferri C, Musacchio A, Petrovic A (2007) The Ndc80 complex: hub of kinetochore activity. FEBS Lett 581:2862–2869

    Article  CAS  PubMed  Google Scholar 

  9. Tanaka TU, Desai A (2008) Kinetochore-microtubule interactions: the means to the end. Curr Opin Cell Biol 20:53–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kline-Smith SL, Sandall S, Desai A (2005) Kinetochore-spindle microtubule interactions during mitosis. Curr Opin Cell Biol 17:35–46

    Article  CAS  PubMed  Google Scholar 

  11. Sun SC, Zhang DX, Lee SE, Xu YN, Kim NH (2011) Ndc80 regulates meiotic spindle organization, chromosome alignment, and cell cycle progression in mouse oocytes. Microsc Microanal 17:431–439

    Article  CAS  PubMed  Google Scholar 

  12. Janke C, Ortiz J, Lechner J, Shevchenko A, Shevchenko A, Magiera MM, Schramm C, Schiebel E (2001) The budding yeast proteins Spc24p and Spc25p interact with Ndc80p and Nuf2p at the kinetochore and are important for kinetochore clustering and checkpoint control. EMBO J 20:777–791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Nabetani A, Koujin T, Tsutsumi C, Haraguchi T, Hiraoka Y (2001) A conserved protein, Nuf2, is implicated in connecting the centromere to the spindle during chromosome segregation: a link between the kinetochore function and the spindle checkpoint. Chromosoma 110:322–334

    Article  CAS  PubMed  Google Scholar 

  14. Wigge PA, Kilmartin JV (2001) The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol 152:349–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Le Masson I, Saveanu C, Chevalier A, Namane A, Gobin R, Fromont-Racine M, Jacquier A, Mann C (2002) Spc24 interacts with Mps2 and is required for chromosome segregation, but is not implicated in spindle pole body duplication. Mol Microbiol 43:1431–1443

    Article  PubMed  Google Scholar 

  16. Martin-Lluesma S, Stucke VM, Nigg EA (2002) Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 297:2267–2270

    Article  CAS  PubMed  Google Scholar 

  17. Diaz-Rodriguez E, Sotillo R, Schvartzman JM, Benezra R (2008) Hec1 overexpression hyperactivates the mitotic checkpoint and induces tumor formation in vivo. Proc Natl Acad Sci USA 105:16719–16724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Tien JF, Umbreit NT, Gestaut DR, Franck AD, Cooper J, Wordeman L, Gonen T, Asbury CL, Davis TN (2010) Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B. J Cell Biol 189:713–723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. McCleland ML, Gardner RD, Kallio MJ, Daum JR, Gorbsky GJ, Burke DJ, Stukenberg PT (2003) The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity. Genes Dev 17:101–114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. DeLuca JG, Howell BJ, Canman JC, Hickey JM, Fang G, Salmon ED (2003) Nuf2 and Hec1 are required for retention of the checkpoint proteins Mad1 and Mad2 to kinetochores. Curr Biol 13:2103–2109

    Article  CAS  PubMed  Google Scholar 

  21. Wei RR, Al-Bassam J, Harrison SC (2007) The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat Struct Mol Biol 14:54–59

    Article  CAS  PubMed  Google Scholar 

  22. Gillett ES, Espelin CW, Sorger PK (2004) Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast. J Cell Biol 164:535–546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kemmler S, Stach M, Knapp M, Ortiz J, Pfannstiel J, Ruppert T, Lechner J (2009) Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling. EMBO J 28:1099–1110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Cheeseman IM, Niessen S, Anderson S, Hyndman F, Yates JR III, Oegema K, Desai A (2004) A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev 18:2255–2268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A (2006) The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127:983–997

    Article  CAS  PubMed  Google Scholar 

  26. Asakawa H, Hayashi A, Haraguchi T, Hiraoka Y (2005) Dissociation of the Nuf2-Ndc80 complex releases centromeres from the spindle-pole body during meiotic prophase in fission yeast. Mol Biol Cell 16:2325–2338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Joglekar AP, Bloom KS, Salmon ED (2010) Mechanisms of force generation by end-on kinetochore-microtubule attachments. Curr Opin Cell Biol 22:57–67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Shao-Chen Sun of Nanjing Agricultural University, China for helpful discussions. We also thank BioX-Vision, Hefei, China for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengming Dai.

Additional information

Xiaomou Wei and Chunhai Gao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Gao, C., Luo, J. et al. Hec1 inhibition alters spindle morphology and chromosome alignment in porcine oocytes. Mol Biol Rep 41, 5089–5095 (2014). https://doi.org/10.1007/s11033-014-3374-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3374-4

Keywords

Navigation