Skip to main content
Log in

Comparative modeling and virtual screening for the identification of novel inhibitors for myo-inositol-1-phosphate synthase

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Myo-inositol-1-phosphate (MIP) synthase is a key enzyme in the myo-inositol biosynthesis pathway. Disruption of the inositol signaling pathway is associated with bipolar disorders. Previous work suggested that MIP synthase could be an attractive target for the development of anti-bipolar drugs. Inhibition of this enzyme could possibly help in reducing the risk of a disease in patients. With this objective, three dimensional structure of the protein was modeled followed by the active site prediction. For the first time, computational studies were carried out to obtain structural insights into the interactive behavior of this enzyme with ligands. Virtual screening was carried out using FILTER, ROCS and EON modules of the OpenEye scientific software. Natural products from the ZINC database were used for the screening process. Resulting compounds were docked into active site of the target protein using FRED (Fast Rigid Exhaustive Docking) and GOLD (Genetic Optimization for Ligand Docking) docking programs. The analysis indicated extensive hydrogen bonding network and hydrophobic interactions which play a significant role in ligand binding. Four compounds are shortlisted and their binding assay analysis is underway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Harwood AJ (2004) Lithium and bipolar mood disorder: the inositol-depletion hypothesis revisited. Mol Psychiatr 10:117–126

    Article  Google Scholar 

  2. Steger DJ, Haswell ES, Miller AL, Wente SR, O’Shea EK (2003) Regulation of chromatin remodeling by inositol polyphosphates. Sci Signal 299:114–116

    CAS  Google Scholar 

  3. Shen X, Xiao H, Ranallo R, Wu WH, Wu C (2003) Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Sci Signal 299:112–114

    CAS  Google Scholar 

  4. Vadnal R, Parthasarathy L, Parthasarathy R (1997) Role of inositol in the treatment of psychiatric disorders. CNS Drugs 7:6–16

    Article  CAS  Google Scholar 

  5. Ju S, Shaltiel G, Shamir A, Agam G, Greenberg ML (2004) Human 1-d-myo-inositol-3-phosphate synthase is functional in yeast. J Biol Chem 279:21759–21765

    Article  CAS  PubMed  Google Scholar 

  6. Guan G, Dai P, Shechter I (2003) cDNA cloning and gene expression analysis of human myo-inositol 1-phosphate synthase. Arch Biochem Biophys 417:251–259

    Article  CAS  PubMed  Google Scholar 

  7. Tokuoka SM, Saiardi A, Nurrish SJ (2008) The mood stabilizer valproate inhibits both inositol-and diacylglycerol-signaling pathways in Caenorhabditis elegans. Mol Biol Cell 19:2241–2250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. O’Donnell T, Rotzinger S, Nakashima TT, Hanstock CC, Ulrich M, Silverstone PH (2000) Chronic lithium and sodium valproate both decrease the concentration of myo-inositol and increase the concentration of inositol monophosphates in rat brain. Brain Res 880:84–91

    Article  PubMed  Google Scholar 

  9. Shaltiel G, Shamir A, Shapiro J, Ding D, Dalton E, Bialer M, Harwood AJ, Belmaker RH, Greenberg ML, Agam G (2004) Valproate decreases inositol biosynthesis. Biol Psychiatry 56:868–874

    Article  CAS  PubMed  Google Scholar 

  10. JAMA and Archives Journals (2011) Prevalence and severity of bipolar disorder worldwide. ScienceDaily. http://www.sciencedaily.com/releases/2011/03/110307161901.htm. Accessed 8 Apr 2013

  11. Agam G, Shamir A, Shaltiel G, Greenberg ML (2002) Myo-inositol-1-phosphate (MIP) synthase: a possible new target for antibipolar drugs. Bipolar Disord 4:15–20

    Article  PubMed  Google Scholar 

  12. Nau H, Hauck RS, Ehlers K (2009) Valproic acid-induced neural tube defects in mouse and human: aspects of chirality, alternative drug development, pharmacokinetics and possible mechanisms. Pharmacol Toxicol 69:310–321

    Article  Google Scholar 

  13. Wadzinski J, Franks R, Roane D, Bayard M (2007) Valproate-associated hyperammonemic encephalopathy. J Am Board Fam Med 20:499–502

    Article  PubMed  Google Scholar 

  14. Sousa SF, Fernandes PA, Ramos MJ (2006) Protein–ligand docking: current status and future challenges. Proteins: Struct Funct Bioinform 65:15–26

    Article  CAS  Google Scholar 

  15. Saleem A, Azam SS, Zarina S (2012) Docking and molecular dynamics simulation studies on glycation-induced conformational changes of human paraoxonase 1. Eur Biophys J 41:241–248

    Article  CAS  PubMed  Google Scholar 

  16. Šali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (2004) Evaluation of comparative protein modeling by MODELLER. Proteins: Struct Funct Bioinform 23:318–326

    Google Scholar 

  17. Pieper U, Eswar N, Braberg H, Madhusudhan MS, Davis FP, Stuart AC, Mirkovic N, Rossi A, Marti-Renom MA, Fiser A, Webb B, Greenblatt D, Huang CC, Ferrin TE, Sali A (2004) MODBASE, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res 32:D217–D222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40

    Article  PubMed Central  PubMed  Google Scholar 

  19. Lambert C, Léonard N, De Bolle X, Depiereux E (2002) ESyPred3D: prediction of proteins 3D structures. Bioinformatics 18:1250–1256

    Article  CAS  PubMed  Google Scholar 

  20. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  22. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  23. Colovos C, Yeates TO (2008) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519

    Article  Google Scholar 

  24. Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404

    Article  CAS  PubMed  Google Scholar 

  25. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Suppl 2):W407–W410

    Article  PubMed Central  PubMed  Google Scholar 

  26. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker John M (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607

    Chapter  Google Scholar 

  27. Laskowski RA, Watson JD, Thornton JM (2005) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res 33(Suppl 2):W89–W93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Stein AJ, Geiger JH (2002) The crystal structure and mechanism of 1-l-myo-inositol-1-phosphate synthase. J Biol Chem 277:9484–9491

    Article  CAS  PubMed  Google Scholar 

  29. Jin X, Foley KM, Geiger JH (2004) The structure of the 1l-myo-inositol-1-phosphate synthase-NAD+-2-deoxy-d-glucitol 6-(E)-vinylhomophosphonate complex demands a revision of the enzyme mechanism. J Biol Chem 279:13889–13895

    Article  CAS  PubMed  Google Scholar 

  30. Irwin JJ, Shoichet BK (2005) ZINC-a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13:894–901

    Article  CAS  PubMed  Google Scholar 

  32. Hawkins PC, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50:74–82

    Article  CAS  PubMed  Google Scholar 

  33. Muchmore SW, Souers AJ, Akritopoulou-Zanze I (2006) The use of three-dimensional shape and electrostatic similarity searching in the identification of a melanin-concentrating hormone receptor 1 antagonist. Chem Biol Drug Des 67:174–176

    Article  CAS  PubMed  Google Scholar 

  34. Fontaine F, Bolton E, Borodina Y, Bryant SH (2007) Fast 3D shape screening of large chemical databases through alignment-recycling. Chem Cent J 1:1–14

    Article  Google Scholar 

  35. Rush TS, Grant JA, Mosyak L, Nicholls A (2005) A shape-based 3-D scaffold hopping method and its application to a bacterial protein–protein interaction. J Med Chem 48:1489–1495

    Article  CAS  PubMed  Google Scholar 

  36. Sangster J (1997) Octanol–water partition coefficients: fundamentals and physical chemistry. Eur J Med Chem 32:842

    Google Scholar 

  37. Hawkins PC, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J Chem Inf Model 50:572–584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Jergil M, Forsberg M, Salter H, Stockling K, Gustafson AL, Dencker L, Stigson M (2011) Short-time gene expression response to valproic acid and valproic acid analogs in mouse embryonic stem cells. Toxicol Sci 121:328–342

    Article  CAS  PubMed  Google Scholar 

  39. Pessah N, Yagen B, Hen N, Shimshoni JA, Wlodarczyk B, Finnell RH, Bialer M (2011) Design and pharmacological activity of glycinamide and N-methoxy amide derivatives of analogs and constitutional isomers of valproic acid. Epilepsy Behav 22:461–468

    Article  PubMed  Google Scholar 

  40. Galit S, Shirley M, Ora K, Belmaker RH, Galila A (2007) Effect of valproate derivatives on human brain myo-inositol-1-phosphate (MIP) synthase activity and amphetamine-induced rearing. Pharmacol Rep 59:402–407

    CAS  PubMed  Google Scholar 

  41. Comelli NC, Lobayan RM, Castro EA, Jubert AH (2011) Study of the structural and electronic properties of valproic acid and new derivatives used as anticonvulsant agents. J Phys Chem A 115:1686–1700

    Article  CAS  PubMed  Google Scholar 

  42. McGaughey GB, Sheridan RP, Bayly CI, Culberson JC, Kreatsoulas C, Lindsley S, Maiorov V, Truchon JF, Cornell WD (2007) Comparison of topological, shape, and docking methods in virtual screening. J Chem Inf Model 47:1504–1519

    Article  CAS  PubMed  Google Scholar 

  43. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  44. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Protein Eng 8:127–134

    Article  CAS  PubMed  Google Scholar 

  45. Molecular Operating Environment (MOE), 2012.10; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2012

  46. Humphrey W, Dalke A, Schulten K (1996) VMD—Visual Molecular Dynamics. J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

  47. Wang R, Lai L, Wang S (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aid Mol Des 16:11–26

    Article  CAS  Google Scholar 

  48. McGann MR, Almond HR, Nicholls A, Grant JA, Brown FK (2002) Gaussian docking functions. Biopolymers 68:76–90

    Article  Google Scholar 

  49. Costakes GT (2006) Overview of current docking programs. MMG 445 Basic Biotech eJ 1:4

  50. Liebeschuetz JW, Cole JC, Korb O (2012) Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test. J Comput Aid Mol Des 26:737–748

    Article  CAS  Google Scholar 

  51. Chakrabarti S, Lanczycki CJ (2007) Analysis and prediction of functionally important sites in proteins. Protein Sci 16:4–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Shanmugam A, Natarajan J (2012) Comparative modeling of UDP-N-acetylmuramoyl-glycyl-d-glutamate-2,6-diaminopimelate ligase from Mycobacterium leprae and analysis of its binding features through molecular docking studies. J Mol Model 18:115–125

    Article  CAS  PubMed  Google Scholar 

  53. Preißner R, Egner U, Saenger W (1991) Occurrence of bifurcated three-center hydrogen bonds in proteins. FEBS Lett 288:192–196

    Article  PubMed  Google Scholar 

  54. Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Edit 41:48–76

    Article  CAS  Google Scholar 

  55. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Edit 42:1210–1250

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Higher Education Commission (HEC) of Pakistan. The authors would also like to thank the OpenEye Scientific Software for providing the academic license.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Sikander Azam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Supplementary material 1 Ramachandran plot for the model built by MODELLER (TIFF 2729 kb)

Figure S2

Supplementary material 2 Verify3D plot for the five models generated by MODELLER indicating the better quality of model 2 (TIFF 1313 kb)

Supplementary material 3 Physicochemical Properties of MIP synthase through Expasy ProtParam tool (PDF 10 kb)

Supplementary material 4 Calculated secondary structure elements by ProFunc (PDF 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azam, S.S., Sarfaraz, S. & Abro, A. Comparative modeling and virtual screening for the identification of novel inhibitors for myo-inositol-1-phosphate synthase. Mol Biol Rep 41, 5039–5052 (2014). https://doi.org/10.1007/s11033-014-3370-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3370-8

Keywords

Navigation