Skip to main content

Advertisement

Log in

Molecular cloning and characterization of the lipopolysaccharide and β-1,3-glucan binding protein from oriental river prawn, Macrobrachium nipponense

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The lipopolysaccharide and β-1,3-glucan binding protein (LGBP), one of the pattern recognition proteins, plays an important role in the innate immune response of invertebrates. A 1,506 bp full-length cDNA of a LGBP gene was cloned and characterized from the oriental river prawn Macrobrachium nipponense (named as MnLGBP). Analysis of the nucleotide sequence revealed that the cDNA clone has an open reading frame of 1,119 bp, encoding a protein of 372 amino acids including a 21-aa signal peptide. The calculated molecular mass of the mature protein (351 aa) was 39.9 kDa with an estimated pI of 4.63. The MnLGBP sequence contains: (1) two putative integrin-binding motifs, (2) a glucanase motif, (3) two putative N-glycosylation sites, (4) one protein kinase C phosphorylation site, and (5) a putative recognition motif for β-1,3-linkage of polysaccharides. Sequence comparison based on the deduced amino acid sequence of MnLGBP showed varied identity of 89, 76 and 74 % with those of Macrobrachium rosenbergii LGBP, Marsupenaeus japonicus β-1,3-glucan binding proteins, and Fenneropenaeus chinensis LGBP, respectively. Quantitative RT-PCR results showed that MnLGBP was expressed in nerve, intestine, muscle, gill, heart, haemocytes and at the highest level in hepatopancreas. After challenge with the pathogen, Aeromonas hydrophila and Vibrio parahaemolyticus, the expression of MnLGBP mRNA was significantly upregulated in the hepatopancreas compared to the control group. At the same time, the mRNA level of MnproPO increased dramatically at 48 h after injection of bacteria. These data should be helpful to better understand the function of MnLGBP in the prawn immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Uno Y (1971) Studies on the aquaculture of Macrobrachium nipponense (de Haan) with special reference to breeding cycle, larval development and feeding ecology. La Mer 9(2):123–128

    Google Scholar 

  2. Wang W, Sun R, Wang A, Bao L, Wang P (2002) Effect of different environmental factors on the activities of digestive enzymes and alkaline phosphatase of Macrobrochium nipponense. Ying Yong Sheng Tai Xue Bao 13(9):1153–1156

    CAS  PubMed  Google Scholar 

  3. Shen J, Qian D, Liu W, Yin W, Shen Z, Cao Z, Wu Y, Zhang N (2000) Studies on the pathogens of bacterial diseases of Macrobrachium nipponense. J Zhejiang Ocean Univ 3:222–224

    Google Scholar 

  4. Le Moullac G, Haffner P (2000) Environmental factors affecting immune responses in Crustacea. Aquaculture 191(1):121–131

    Article  Google Scholar 

  5. Loker ES, Adema CM, Zhang SM, Kepler TB (2004) Invertebrate immune systems—not homogeneous, not simple, not well understood. Immunol Rev 198(1):10–24

    Article  PubMed  Google Scholar 

  6. Hoffmann JA, Kafatos FC, Janeway CA Jr, Ezekowitz R (1999) Phylogenetic perspectives in innate immunity. Science 284(5418):1313–1318

    Article  CAS  PubMed  Google Scholar 

  7. Medzhitov R, Janeway C (1997) Innate immunity: minireview the virtues of a nonclonal system of recognition. Cell 91:295–298

    Article  CAS  PubMed  Google Scholar 

  8. Fearon DT, Locksley RM (1996) The instructive role of innate immunity in the acquired immune response. Science 272(5258):50–54

    Article  CAS  PubMed  Google Scholar 

  9. Iwanaga S, Lee BL (2005) Recent advances in the innate immunity of invertebrate animals. J Biochem Mol Biol 38(2):128–150

    Article  CAS  PubMed  Google Scholar 

  10. Lee SY, Wang R, Sdl K (2000) A lipopolysaccharide- and β-1,3-glucan-binding protein from haemocytes of the freshwater crayfish Pacifastacus leninusculus. Purification, characterization, and cDNA cloning. J Biol Chem 2000:1337–1343

    Article  Google Scholar 

  11. Christophides GK, Vlachou D, Kafatos FC (2004) Comparative and functional genomics of the innate immune system in the malaria vector Anopheles gambiae. Immunol Rev 198(1):127–148

    Article  CAS  PubMed  Google Scholar 

  12. Du XJ, Zhao XF, Wang JX (2007) Molecular cloning and characterization of a lipopolysaccharide and β-1,3-glucan binding protein from fleshy prawn (Fenneropenaeus chinensis). Mol Immunol 44:1085–1094

    Article  CAS  PubMed  Google Scholar 

  13. Dziarski R (2004) Peptidoglycan recognition proteins (PGRPs). Mol Immunol 40(12):877–886

    Article  CAS  PubMed  Google Scholar 

  14. Lee SY, Söderhäll K (2002) Early events in crustacean innate immunity. Fish Shellfish Immunol 12(5):421–437

    Article  CAS  PubMed  Google Scholar 

  15. Lackie A (1988) Hemocyte behavior. Adv Insect Physiol 21:85–178

    Article  CAS  Google Scholar 

  16. Hoffmann JA, Reichhart JM, Hetru C (1996) Innate immunity in higher insects. Curr Opin Immunol 8(1):8–13

    Article  CAS  PubMed  Google Scholar 

  17. Iwanaga S, Kawabata S, Miura Y, Seki N, Shigenaga T, Muta T (1994) Clotting cascade in the immune response of horseshoe crab. In: Phylogenetic perspectives in immunity: the insect host defense. RG Landes Company, Austin, pp 79–96

  18. Lai X, Kong J, Wang Q, Wang W, Meng X (2011) Cloning and characterization of a β-1,3-glucan-binding protein from shrimp Fenneropenaeus chinensis. Mol Biol Rep 38(7):4527–4535

    Article  CAS  PubMed  Google Scholar 

  19. Sritunyalucksana KKS (2000) The proPO and clotting system in crustaceans. Aquaculture 191:53–59

    Article  CAS  Google Scholar 

  20. Zhang D, Ma J, Jiang J, Qiu L, Zhu C, Su T, Li Y, Wu K, Jiang S (2010) Molecular characterization and expression analysis of lipopolysaccharide and β-1,3-glucan-binding protein (LGBP) from pearl oyster Pinctada fucata. Mol Biol Rep 37(7):3335–3343

    Article  CAS  PubMed  Google Scholar 

  21. Valli JS, Vaseeharan B (2012) cDNA cloning, characterization and expression of lipopolysaccharide and β-1,3-glucan binding protein (LGBP) gene from the Indian white shrimp Fenneropenaeus indicus. Comp Biochem Physiol A 163(1):74–81. doi:10.1016/j.cbpa.2012.05.185

    Article  CAS  Google Scholar 

  22. Zhao D, Chen L, Qin C, Zhang H, Wu P, Li E, Chen L, Qin J (2009) Molecular cloning and characterization of the lipopolysaccharide and β-1,3-glucan binding protein in Chinese mitten crab (Eriocheir sinensis). Comp Biochem Physiol B 154(1):17–24

    Article  PubMed  Google Scholar 

  23. Liu F, Li F, Dong B, Wang X, Xiang J (2009) Molecular cloning and characterisation of a pattern recognition protein, lipopolysaccharide and β-1,3-glucan binding protein (LGBP) from Chinese shrimp Fenneropenaeus chinensis. Mol Biol Rep 36(3):471–477

    Article  CAS  PubMed  Google Scholar 

  24. ChinChyuan C, WinTon C (2009) Molecular cloning and characterization of lipopolysaccharide-and β-1,3-glucan-binding protein from the giant freshwater prawn Macrobrachium rosenbergii and its transcription in relation to foreign material injection and the molt stage. Fish Shellfish Immunol 27(6):701–706

    Article  Google Scholar 

  25. Lin YC, Vaseeharan B, Chen JC (2008) Identification and phylogenetic analysis on lipopolysaccharide and β-1,3-glucan binding protein (LGBP) of kuruma shrimp Marsupenaeus japonicus. Dev Comp Immunol 32(11):1260–1269

    Article  CAS  PubMed  Google Scholar 

  26. Cheng W, Liu CH, Tsai CH, Chen JC (2005) Molecular cloning and characterisation of a pattern recognition molecule, lipopolysaccharide-and β-1,3-glucan binding protein (LGBP) from the white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 18(4):297–310

    Article  CAS  PubMed  Google Scholar 

  27. Roux MM, Pain A, Klimpel KR, Dhar AK (2002) The lipopolysaccharide and β-1,3-glucan binding protein gene is upregulated in white spot virus-infected shrimp (Penaeus stylirostris). J Virol 76(17):7140–7149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Zhao W, Chen L, Qin J, Wu P, Zhang F, Li E, Tang B (2011) MnHSP90 cDNA characterization and its expression during the ovary development in oriental river prawn, Macrobrachium nipponense. Mol Biol Rep 38(2):1399–1406

    Article  CAS  PubMed  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  30. Soderhall K, Cerenius L, Johansson MW (1996) The prophenoloxidase activating system in invertebrates. In: New directions in invertebrate immunology, SOS Publications, Fair Haven, NJ, pp 229–253

  31. Sritunyalucksana K, Soderhall K (2000) The proPO and clotting system in crustaceans. Aquaculture 191(1):53–69

    Article  CAS  Google Scholar 

  32. Vargas-Albores F, Yepiz-Plascencia G (2000) Beta glucan binding protein and its role in shrimp immune response. Aquaculture 191(1–3):13–21

    Article  CAS  Google Scholar 

  33. Yeh M, Chang C, Cheng W (2009) Molecular cloning and characterization of lipopolysaccharide-and beta-1,3-glucan-binding protein from the giant freshwater prawn Macrobrachium rosenbergii and its transcription in relation to foreign material injection and the molt stage. Fish Shellfish Immunol 27(6):701

    Article  CAS  PubMed  Google Scholar 

  34. Johansson MW (1999) Cell adhesion molecules in invertebrate immunity. Dev Comp Immunol 23(4–5):303–315

    Article  CAS  PubMed  Google Scholar 

  35. Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Bi 12(1):697–715

    Article  CAS  Google Scholar 

  36. Sritunyalucksana K, Lee SY, Söderhäll K (2002) A [beta]-1, 3-glucan binding protein from the black tiger shrimp, Penaeus monodon. Dev Comp Immunol 26(3):237–245

    Article  CAS  PubMed  Google Scholar 

  37. Zhao ZY, Yin ZX, Weng SP, Guan HJ, Li SD, Xing K, Chan SM, He JG (2007) Profiling of differentially expressed genes in hepatopancreas of white spot syndrome virus-resistant shrimp (Litopenaeus vannamei) by suppression subtractive hybridisation. Fish Shellfish Immunol 22(5):520–534

    Article  CAS  PubMed  Google Scholar 

  38. Gross P, Bartlett T, Browdy C, Chapman R, Warr G (2001) Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific White Shrimp, Litopenaeus vannamei, and the Atlantic White Shrimp, L. setiferus. Dev Comp Immunol 25(7):565–577

    Article  CAS  PubMed  Google Scholar 

  39. Jiang H, Cai YM, Chen LQ, Zhang XW, Hu SN, Wang Q (2009) Functional annotation and analysis of expressed sequence tags from the hepatopancreas of mitten crab (Eriocheir sinensis). Mar Biotechnol 11(3):317–326

    Article  CAS  PubMed  Google Scholar 

  40. Johnson P (1987) A review of fixed phagocytic and pinocytic cells of decapod crustaceans with remark on hemocytes. Dev Comp Immunol 11(4):679–704

    Article  CAS  PubMed  Google Scholar 

  41. Vogt G (1996) Cytopathology of Bay of Piran shrimp virus (BPSV), a new crustacean virus from the Mediterranean Sea. J Invertebr Pathol 68(3):239–245

    Article  CAS  PubMed  Google Scholar 

  42. Rodriguez I, Novoa B, Figueras A (2008) Immune response of zebrafish (Danio rerio) against a newly isolated bacterial pathogen Aeromonas hydrophila. Fish Shellfish Immunol 25(3):239–249

    Article  CAS  PubMed  Google Scholar 

  43. Lu H, Jin L, Fan L, Xue M (1999) Isolation and identification of the bacterial pathogens in Eriocheir sinensis. J Fish China 23(4):381–386

    Google Scholar 

  44. Pruzzo C, Gallo G, Canesi L (2005) Persistence of vibrios in marine bivalves: the role of interactions with haemolymph components. Environ Microbiol 7(6):761–772. doi:10.1111/j.1462-2920.2005.00792.x

    Article  PubMed  Google Scholar 

  45. Paniagua E, Parama A, Iglesias R, Sanmartin M, Leiro J (2001) Effects of bacteria on the growth of an amoeba infecting the gills of turbot. Dis Aquat Organ 45(1):73–76

    Article  CAS  PubMed  Google Scholar 

  46. Bauer JC, Young CM (2000) Epidermal lesions and mortality caused by vibriosis in deep-sea Bahamian echinoids: a laboratory study. Dis Aquat Organ 39(3):193–199. doi:10.3354/dao039193

    Article  CAS  PubMed  Google Scholar 

  47. DePaola A, Motes ML, Chan AM, Suttle CA (1998) Phages infecting Vibrio vulnificus are abundant and diverse in oysters (Crassostrea virginica) collected from the Gulf of Mexico. Appl Environ Microb 64(1):346–351

    CAS  Google Scholar 

  48. Amparyup P, Charoensapsri W, Tassanakajon A (2013) Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish Shellfish Immunol 34(4):990–1001

    Google Scholar 

Download references

Acknowledgments

We thank Professor O. Roger Anderson for editing the manuscript. This work was supported by Grants from the National Natural Sciences Foundation of China (NSFC Nos. 31170120; 31101926; 31272686), Project for aquaculture in Jiangsu Province (No. PJ011-65), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Jiangsu Agriculture Science and Technology Innovation Fund (JASTIF), CX(12)3066, and the Cultivation Plan for Excellent Doctorial Dissertations of Nanjing Normal University (No. CXLX13_383), and Incubation Program for a New Type Academic Ph.D Student of Nanjing Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingguo Meng or Wen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiu, Y., Wu, T., Liu, P. et al. Molecular cloning and characterization of the lipopolysaccharide and β-1,3-glucan binding protein from oriental river prawn, Macrobrachium nipponense . Mol Biol Rep 41, 3935–3944 (2014). https://doi.org/10.1007/s11033-014-3261-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3261-z

Keywords

Navigation