Skip to main content
Log in

A proteomic analysis to identify cold acclimation associated proteins in wild wheat (Triticum urartu L.)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

To gain a better understanding of cold acclimation process in wheat, we applied a 2-DE based proteomic approach to discover changes in proteome profile of a diploid wild wheat (Triticum urartu L.) during prolonged cold stress treatment. To this end, plants were grown in pots and the growing seedlings (4-leaf stage) were exposed to cold stress. After 4 weeks of cold acclimation (4–6 °C) and subsequent treatment for 12 h at −2 °C, samples were collected from control and stressed plants and were subjected to proteome pattern analysis. Among approximately 450 reproducible protein spots displayed in each given 2-DE gels, 34 proteins changed significantly in abundance in response to cold stress. Among them, 25 and 9 proteins were up and down-regulated under stress condition, respectively. Analysis by matrix-assisted laser desorption ionization time of flight/time of flight mass spectrometry coupled with non-redundant protein database search allowed the identification of 20 cold-induced proteins. Integrated proteomic and database survey resulted in identification of several cold stress related proteins such as pathogenesis related protein, cold regulated protein, cold-responsive LEA/RAB-related COR protein, oxygen-evolving enhancer protein and oxalate oxidase. The presumed functions of the identified proteins were mostly related to cold acclimation, oxidative stress and photosynthesis. The possible implications of differentially accumulated proteins in acquiring systemic tolerance to freezing stress following exposure to prolonged low temperature will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hale MG, Orcutt DM (1987) The physiology of plants under stress. Wiley, New York

    Google Scholar 

  2. Yadav S (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30:515–527

    Article  CAS  Google Scholar 

  3. Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223

    Article  CAS  Google Scholar 

  4. Atici O, Nalbantoglu B (2003) Antifreeze proteins in higher plants. Phytochemistry 64:1187–1196

    Article  CAS  PubMed  Google Scholar 

  5. Griffith M, Antikainen M, Hon W-C, Pihakaski-Maunsbach K, Yu X-M, Chun JU, Yang DSC (1997) Antifreeze proteins in winter rye. Physiol Plant 100:327–332

    Article  CAS  Google Scholar 

  6. Janská A, Maršík P, Zelenková S, Ovesná J (2010) Cold stress and acclimation—what is important for metabolic adjustment? Plant Biol 12:395–405

    Article  PubMed  Google Scholar 

  7. Xin Z (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Article  Google Scholar 

  8. Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiol 109:15–30

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Sharma P, Sharma N, Deswal R (2005) The molecular biology of the low-temperature response in plants. BioEssays 27:1048–1059

    Article  CAS  PubMed  Google Scholar 

  10. Chinnusamy V, Zhu J, Zhu JK (2006) Gene regulation during cold acclimation in plants. Physiol Plant 126:52–61

    Article  CAS  Google Scholar 

  11. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  13. Renaut J, Hausman JF, Wisniewski ME (2006) Proteomics and low‐temperature studies: bridging the gap between gene expression and metabolism. Physiol Plant 126:97–109

    Article  CAS  Google Scholar 

  14. Kreps JA, Wu Y, Chang H-S, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell Online 14:1675–1690

    Article  CAS  Google Scholar 

  16. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high‐salinity stresses using a full‐length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  17. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, Fujita M, Yoshiwara K, Matsukura S, Morishita Y, Sasaki R, Suzuki H, Saito K, Shibata D, Shinozaki K, Yamaguchi-Shinozaki K (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150:1972–1980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 4:117

    Article  PubMed Central  PubMed  Google Scholar 

  20. Pradet-Balade B, Boulme F, Beug H, Mullner EW, Garcia-Sanz JA (2001) Translation control: bridging the gap between genomics and proteomics? Trends Biochem Sci 26:225–229

    Article  CAS  PubMed  Google Scholar 

  21. Rinalducci S, Egidi MG, Mahfoozi S, Godehkahriz SJ, Zolla L (2011) The influence of temperature on plant development in a vernalization-requiring winter wheat: a 2-DE based proteomic investigation. J Proteomics 74:643–659

    Article  CAS  PubMed  Google Scholar 

  22. Kosová K, Vítámvás P, Planchon S, Renaut J, Vanková R, Prášil IT (2013) Proteome analysis of cold response in spring and winter wheat (Triticum aestivum) crowns reveals similarities in stress adaptation and differences in regulatory processes between the growth habits. J Proteome Res 12:4830–4845

    Article  PubMed  Google Scholar 

  23. Wang X, Yang P, Zhang X, Xu Y, Kuang T, Shen S, He Y (2009) Proteomic analysis of the cold stress response in the moss Physcomitrella patens. Proteomics 9:4529–4538

    Article  CAS  PubMed  Google Scholar 

  24. Sarhadi E, Mahfoozi S, Hosseini SA, Salekdeh GH (2010) Cold acclimation proteome analysis reveals close link between the up-regulation of low-temperature associated proteins and vernalization fulfillment. J Proteome Res 9:5658–5667

    Article  CAS  PubMed  Google Scholar 

  25. Brule-Babel AL, Fowler DB (1988) Genetic control of cold hardiness and vernalization requirement in winter wheat. Crop Sci 28:879–884

    Article  Google Scholar 

  26. Damerval C, De Vienne D, Zivy M, Thiellement H (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7:52–54

    Article  CAS  Google Scholar 

  27. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  28. Gharechahi J, Khalili M, Hasanloo T, Salekdeh GH (2013) An integrated proteomic approach to decipher the effect of methyl jasmonate elicitation on the proteome of Silybum marianum L. hairy roots. Plant Physiol Biochem 70:115–122

    Article  CAS  PubMed  Google Scholar 

  29. Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis (Weinheim, Fed. Repub. Ger.) 8:93–99

    CAS  Google Scholar 

  30. Sharifi G, Ebrahimzadeh H, Ghareyazie B, Gharechahi J, Vatankhah E (2012) Identification of differentially accumulated proteins associated with embryogenic and non-embryogenic calli in saffron (Crocus sativus L.). Proteome Sci 10:3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Fowler DB, Limin AE, Ritchie JT (1999) Low-temperature tolerance in cereals: model and genetic interpretation. Crop Sci 39:626–633

    Article  Google Scholar 

  32. Olien CR (1967) Freezing stresses and survival. Annu Rev Plant Physiol 18:387–408

    Article  Google Scholar 

  33. Sung S, Amasino RM (2005) Remembering winter: toward a molecular understanding of vernalization. Annu Rev Plant Biol 56:491–508

    Article  CAS  PubMed  Google Scholar 

  34. Renaut J, Hausman J-F, Wisniewski ME (2006) Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism. Physiol Plant 126:97–109

    Article  CAS  Google Scholar 

  35. Pomeroy MK, Fowler DB (1973) Use of lethal dose temperature estimates as indices of frost tolerance for wheat cold acclimated under natural and controlled environments. Can J Plant Sci 53:489–494

    Article  Google Scholar 

  36. Kobayashi F, Takumi S, Nakata M, Ohno R, Nakamura T, Nakamura C (2004) Comparative study of the expression profiles of the Cor/Lea gene family in two wheat cultivars with contrasting levels of freezing tolerance. Physiol Plant 120:585–594

    Article  CAS  PubMed  Google Scholar 

  37. Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genom 9:118

    Article  Google Scholar 

  39. NDong C, Danyluk J, Wilson KE, Pocock T, Huner NP, Sarhan F (2002) Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. Plant Physiol 129:1368–1381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Tsuda K, Tsvetanov S, Takumi S, Mori N, Atanassov A, Nakamura C (2000) New members of a cold-responsive group-3 Lea/Rab-related Cor gene family from common wheat (Triticum aestivum L.). Genes Genet Syst 75:179–188

    Article  CAS  PubMed  Google Scholar 

  41. Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1 from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Zhang L, Ohta A, Takagi M, Imai R (2000) Expression of plant group 2 and group 3 lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins. J Biochem 127:611–616

    Article  CAS  PubMed  Google Scholar 

  43. Yu J-N, Zhang J-S, Shan L, Chen S-Y (2005) Two new group 3 LEA genes of wheat and their functional analysis in yeast. J Integr Plant Biol 47:1372–1381

    Article  CAS  Google Scholar 

  44. Rinalducci S, Egidi MG, Karimzadeh G, Jazii FR, Zolla L (2011) Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis 32:1807–1818

    Article  CAS  PubMed  Google Scholar 

  45. Han Q, Kang G, Guo T (2013) Proteomic analysis of spring freeze-stress responsive proteins in leaves of bread wheat (Triticum aestivum L.). Plant Physiol Biochem 63:236–244

    Article  CAS  PubMed  Google Scholar 

  46. Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  CAS  PubMed  Google Scholar 

  47. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  48. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:26

    Google Scholar 

  49. Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. CMLS Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  50. McKersie BD, Bowley SR, Jones KS (1999) Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 119:839–848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Gupta AS, Webb RP, Holaday AS, Allen RD (1993) Overexpression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants). Plant Physiol 103:1067–1073

    PubMed Central  PubMed  Google Scholar 

  52. Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu G (2003) Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol 133:170–181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. May MJ, Vernoux T, Leaver C, Montagu MV, Inzé D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49:649–667

    CAS  Google Scholar 

  54. Yan S-P, Zhang Q-Y, Tang Z-C, Su W-A, Sun W-N (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics 5:484–496

    Article  CAS  PubMed  Google Scholar 

  55. Bocian A, Kosmala A, Rapacz M, Jurczyk B, Marczak L, Zwierzykowski Z (2011) Differences in leaf proteome response to cold acclimation between Lolium perenne plants with distinct levels of frost tolerance. J Plant Physiol 168:1271–1279

    Article  CAS  PubMed  Google Scholar 

  56. Hahn M, Walbot V (1989) Effects of cold-treatment on protein synthesis and mRNA levels in rice leaves. Plant Physiol 91:930–938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Dorrestein PC, Huili ZH, Taylor SV, McLafferty FW, Begley TP (2004) The biosynthesis of the thiazole phosphate moiety of thiamin (vitamin B1): the early steps catalyzed by thiazole synthase. J Am Chem Soc 126:3091–3096

    Article  CAS  PubMed  Google Scholar 

  58. Hohmann S, Meacock PA (1998) Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation. Biochimica et Biophysica Acta (BBA) 1385:201–219

    Article  CAS  Google Scholar 

  59. Tunc-Ozdemir M, Miller G, Song L, Kim J, Sodek A, Koussevitzky S, Misra AN, Mittler R, Shintani D (2009) Thiamin confers enhanced tolerance to oxidative stress in arabidopsis. Plant Physiol 151:421–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Sayed SA, Gadallah MAA (2002) Effects of shoot and root application of thiamin on salt-stressed sunflower plants. Plant Growth Regul 36:71–80

    Article  CAS  Google Scholar 

  61. Ribeiro DT, Farias LP, de Almeida JD, Kashiwabara PM, Ribeiro AFC, Silva-Filho MC, Menck CFM, Van Sluys M-A (2005) Functional characterization of the THI1 promoter region from Arabidopsis thaliana. J Exp Bot 56:1797–1804

    Article  CAS  PubMed  Google Scholar 

  62. Vítámvás P, Saalbach G, Prášil IT, Čapková V, Opatrná J, Ahmed J (2007) WCS120 protein family and proteins soluble upon boiling in cold-acclimated winter wheat. J Plant Physiol 164:1197–1207

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant provided by department of agronomy and plant breeding at University College of Agriculture and Natural resources, University of Tehran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Gharechahi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1579 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gharechahi, J., Alizadeh, H., Naghavi, M.R. et al. A proteomic analysis to identify cold acclimation associated proteins in wild wheat (Triticum urartu L.). Mol Biol Rep 41, 3897–3905 (2014). https://doi.org/10.1007/s11033-014-3257-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3257-8

Keywords

Navigation