Skip to main content

Advertisement

Log in

Molecular cloning, characterization and expression analysis of Melanotransferrin from the sea cucumber Apostichopus japonicus

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Melanotransferrin (MTf), a member of the transferrin families, plays an important role in immune response. But the research about MTf in sea cucumber is limited till now. In this study, the Melanotransferrin (Aj-MTf) gene was firstly cloned and characterized from the sea cucumber Apostichoupus japonicus by reverse transcriptase polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends. The full-length cDNA of Aj-MTf is 2,840 bp in length and contains a 2,184 bp open reading frame that encodes a polypeptide of 727 amino acids. An iron-responsive element-like structure is located at the 5′-UTR of Aj-MTf cDNA. Sequence analysis shows that the Aj-MTf contains two conserved domains, and the binding-iron (III) sites, including eight amino acid residues (D81,Y109,Y215,H283,D425,Y454,Y565 and H634) and three N-linked glycosylation sites (N121V122S123,N173A174S175 and N673S674T675). Quantitative real-time polymerase chain reaction (qRT-PCR) analyses suggested that the Aj-MTf expressions in the coelomic fluid, body cavity wall and respiratory trees were significantly changed from 4 to 24 h post lipopolysaccharide (LPS) injection. The mRNA levels of Aj-MTf in coelomic fluid was significantly up-regulated at 12 and 24 h in treatment group, and Aj-MTf shared a similar expression pattern with C-type lectin in coelomic fluid, while both genes appears to gradually increase after 4 h of LPS injection. These results indicate that the Aj-MTf plays a pivotal role in immune responses to the LPS challenge in sea cucumber, and provide new information that it is complementary to the sea cucumber immune genes and initiate new researches concerning the genetic basis of the holothurian immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sun WH, Leng KL, Lin H et al (2010) Analysis and evaluation of chief nutrient composition in different parts of Stichopus japonicus. Chin J Anim Nutr 22:212–220

    CAS  Google Scholar 

  2. Wang YL, Li D, Wang XL (2011) Advance of immune-related genes in sea cucumber. Biotechnol Bull 9:22–26

    Google Scholar 

  3. Yang A, Sun D, Liu S et al (2012) Characterization of fifteen SNP markers by mining EST in sea cucumber, Apostichopus japonicus. J Genet 91:49–53

    Article  Google Scholar 

  4. Zhao Y, Zhang W, Xu W et al (2012) Effects of potential probiotic Bacillus subtilis T13 on growth, immunity and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus. Fish & Shellfish Immunol 32:750–755

    Article  CAS  Google Scholar 

  5. Wang Y, Qiu XM, Wang J et al (2009) Disease situation and its detection advances by biotechnology of Apostichopus japonicus. Biotechnol Bull 11:60–64

    Google Scholar 

  6. Jans D, Dubois P, Jangoux M (1996) Defensive mechanisms of holothuroids (Echinodermata): formation, role, and fate of intracoelomic brown bodies in the sea cucumber Holothuria tubulosa. J Cell Tissue Res 283:99–106

    Article  Google Scholar 

  7. Li DT, Song L, Zhong L et al (2005) Isolation, purification and properties of lectin from Apotichopus japonicus. J Fisheries China 29:654–658

    CAS  Google Scholar 

  8. Gowda NM, Goswami U, Khan MI (2008) T-antigen binding lectin with antibacterial activity from marine invertebrate, sea cucumber (Holothuria scabra): possible involvement in differential recognition of bacteria. J Invertebr Pathol 99:141–145

    Article  CAS  PubMed  Google Scholar 

  9. Li DT, Xie GC, Ding WY et al (2011) Prokaryotic expression, purification and bioactivity analysis of Apostichopus japonicus mannan-binding lectin. J Fisheries China 35:1166–1171

    CAS  Google Scholar 

  10. Ramírez-Gómez F, Ortíz-Pineda PA, Rojas-Cartagena G et al (2008) Immune-related genes associated with intestinal tissue in the sea cucumber Holothuria glaberrima. Immunogenetics 60:57–61

    Article  PubMed  Google Scholar 

  11. Yang AF, Zhou ZC, Dong Y et al (2010) Expression of immune-related genes in embryos and larvae of sea cucumber Apostichopus japonicus. Fish Shellfish Immunol 29:839–845

    Article  CAS  PubMed  Google Scholar 

  12. Li CH, Cui J, Li Y et al (2011) Cloning and characterization of ferritin gene from south cultured Stichopus japonicus. Oceanologia et Limnologia Sinica 42:567–572

    CAS  Google Scholar 

  13. Brooks JM, Wesael GM (2002) The major yolk protein in sea urchins is a transferrin-like, iron binding protein. Dev Biol 245:1–12

    Article  CAS  PubMed  Google Scholar 

  14. Rojas-Cartagena C, Ortíz-Pineda P, Ramírez-Gómez F et al (2007) Distinct profiles of expressed sequence tags during intestinal regeneration in the sea cucumber Holothuria glaberrima. Physiol Genomics 31:203–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Yan RX, Xu ST, Cong LN et al (2009) Cloning, expression and assay of cathepsin L from the sea cucumber Stichopus japonicus. J Dalian Polytech Univ 28:391–396

    CAS  Google Scholar 

  16. Yang XJ, Cong LN, Lu ML et al (2007) Characterization and structure analysis of a gene encoding i-type lysozyme from sea cucumber Stichopus japonicus. Chin J Biochem Mol Biol 23:542–547

    CAS  Google Scholar 

  17. Li YH, Cong LN, Zhu BW (2008) Purification and characterization of lysozyme from the intestine of sea cucumber. J Dalian Polytech Univ 27:193–196

    CAS  Google Scholar 

  18. Yang AF, Zhou ZC, Sun DP et al (2010) Sequence analysis and expression pattern of ferritin gene in sea cucumber (Apostichopus japonicus). J Fisheries China 34:890–897

    Google Scholar 

  19. Rose TM, Plowman GD, Teplow DB et al (1986) Primary structure of the human melanoma-associated antigen p97 (melanotransferrin) deduced from the mRNA sequence. Proc Natl Acad Sci USA 83:1261–1265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Suryo Rahmanto Y, Richardson DR (2009) Generation and characterization of transgenic mice hyper-expressing melanoma tumour antigen p97 (melanotransferrin): no overt alteration in phenotype. Biochim Biophys Acta 1793:1210–1217

    Article  PubMed  Google Scholar 

  21. Suryo Rahmanto Y, Bal S, Loh KH et al (2012) Melanotransferrin: search for a function. Biochim Biophys Acta 1820:237–243

    Article  PubMed  Google Scholar 

  22. Rolland Y, Demeule M, Michaud-Levesque J et al (2007) Inhibition of tumor growth by a truncated and soluble form of melanotransferrin. Exp Cell Res 313:2910–2919

    Article  CAS  PubMed  Google Scholar 

  23. Suryo Rahmanto Y, Dunn LL, Richardson DR (2007) Identification of distinct changes in gene expression after modulation of melanoma tumor antigen p97 (melanotransferrin) in multiple models in vitro and in vivo. Carcinogenesis 28:2172–2183

    Article  CAS  PubMed  Google Scholar 

  24. Suryo Rahmanto Y, Dunn LL, Richardson DR (2007) The melanoma tumor antigen, melanotransferrin (p97): a 25-year hallmark–from iron metabolism to tumorigenesis. Oncogene 26:6113–6124

    Article  CAS  PubMed  Google Scholar 

  25. Wang Q, Song CC, Li CCH (2004) Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions. J Struct Biol 146:44–57

    Article  CAS  PubMed  Google Scholar 

  26. Nakamasu K, Kawamoto T, Yoshida E et al (2001) Structure and promoter analysis of the mouse membrane-bound transferrin-like protein (MTf) gene. Eur J Biochem 268:1468–1476

    Article  CAS  PubMed  Google Scholar 

  27. Oda R, Suardita K, Fujimoto K et al (2003) Anti-membrane-bound transferrin-like protein antibodies induce cell-shape change and chondrocyte differentiation in the presence or absence of concanavalin A. J Cell Sci 116:2029–2038

    Article  CAS  PubMed  Google Scholar 

  28. Sekyere EO, Dunn LL, Richardson DR (2005) Examination of the distribution of the transferrin homologue, melanotransferrin (tumour antigen p97), in mouse and human. Biochimica et Biophysica Acta (BBA)—Mol Basis Dis 722:131–142

    Article  Google Scholar 

  29. Dunn LL, Sekyere EO, Suryo Rahmanto Y et al (2006) The function of melanotransferrin: a role in melanoma cell proliferation and tumorigenesis. Carcinogenesis 27:2157–2169

    Article  CAS  PubMed  Google Scholar 

  30. Sekyere EO, Dunn LL, Suryo Rahmanto Y et al (2006) Role of melanotransferrin in iron metabolism: studies using targeted gene disruption in vivo. Blood 107:2599–2601

    Article  CAS  PubMed  Google Scholar 

  31. Escrivá H, Pierce A, Coddeville B et al (1995) Rat mammary-gland transferrin: nucleotide sequence, phylogenetic analysis and glycan structure. Biochem J 307:47–55

    Article  PubMed Central  PubMed  Google Scholar 

  32. Richardson DR, Morgan EH (2004) The transferrin homologue, melanotransferrin (p97), is rapidly catabolized by the liver of the rat and does not effectively donate iron to the brain. Biochimica et Biophysica Acta (BBA)—Mol Basis Dise 1690:124–133

    Article  CAS  Google Scholar 

  33. Ramírez-Gómez F, Ortíz-Pineda PA, Rojas-Cartagena G et al (2009) LPS-induced genes in intestinal tissue of the sea cucumber Holothuria glaberrima. PLoS ONE 4:e6178

    Article  PubMed Central  PubMed  Google Scholar 

  34. Kawamoto T, Pan HO, Yan WQ et al (1998) Expression of membrane-bound transferrin-like protein p97 on the cell surface of chondrocytes. Eur J Biochem 256:503–509

    Article  CAS  PubMed  Google Scholar 

  35. McNagny KM, Rossi F, Smith G et al (1996) The eosinophil-specific cell surface antigen, EOS47, is a chicken homologue of the oncofetal antigen melanotransferrin. Blood 87:1343–1352

    CAS  PubMed  Google Scholar 

  36. Chen WY, John JAC, Lin CH et al (2002) Molecular cloning and developmental expression of zinc finger transcription factor MTF-1 gene in Zebrafish, Danio rerio. Biochem Biophys Res Commun 291:798–805

    Article  CAS  PubMed  Google Scholar 

  37. Chen WY, John JAC, Lin CH et al (2007) Expression pattern of metallothionein, MTF-1 nuclear translocation, and its dna-binding activity in Zebrafish (Danio rerio) induced by zinc and cadmium. Environ Toxicol Chem 26:110–117

    Article  CAS  PubMed  Google Scholar 

  38. Cheuk WK, Yiu PCY, Chan KM (2008) Cytotoxicities and induction of metallothionein (MT) and metal regulatory element (MRE)-binding transcription factor-1 (MTF-1) messenger RNA levels in the Zebrafish (Danio rerio) ZFL and SJD cell lines after exposure to various metal ions. Aquat Toxicol 89:103–112

    Article  CAS  PubMed  Google Scholar 

  39. Meng XY, Chang YQ, Qiu XM et al (2010) Generation and analysis of expressed sequence tags from adductor muscle of Japanese scallop Mizuhopecten yessoensis. Comp Biochem Physiol Part D 5:288–294

    Google Scholar 

  40. Maclea KS, Covi JA, Kim HW et al (2008) Myostatin from the American lobster, Homarus americanus: cloning and effects of molting on expression in skeletal muscles. Comp Biochem Physiol Part A 157:328–337

    Article  Google Scholar 

  41. Dunn LL, Suryo Rahmanto Y, Richardson DR (2007) Iron uptake and metabolism in the new millennium. Trends Cell Biol 17:93–100

    Article  CAS  PubMed  Google Scholar 

  42. Proudhon D, Wei J, Briat JF et al (1996) Ferritin gene organization: differences between plants and animals suggest possible kingdom-specific selective constraints. J Mol Evol 42:325–336

    Article  CAS  PubMed  Google Scholar 

  43. Torti FM, Torti SV (2002) Regulation of ferritin genes and protein. Blood 99:3505–3516

    Article  CAS  PubMed  Google Scholar 

  44. Zheng L (2007) The expression of ferritin mRNA induced by iron in giant freshwater prawn macrobrachium rosenbergii. Mar Fisheries 29:307–313

    CAS  Google Scholar 

  45. Henderson BR, Menotti E et al (1994) Optimal sequence and structure of iron-responsive elements. Selection of RNA stem-loops with high affinity for iron regulatory factor. J Biol Chem 269:17481–17489

    CAS  PubMed  Google Scholar 

  46. Williams J, Evans RW, Moreton K (1978) The iron-binding properties of hen ovotransferrin. Biochem J 173:533–539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis 18:2714–2723

    Article  CAS  PubMed  Google Scholar 

  48. Schwede T, Kopp J, Guex N et al (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Arnold K, Bordoli L, Kopp J et al (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  50. Woodbury RG, Brown JP, Loop SM et al (1981) Analysis of normal and neoplastic human tissues for the tumor-associated protein p97. Int J Cancer 27:145–149

    Article  CAS  PubMed  Google Scholar 

  51. Brown JP, Woodbury RG, Hart CE et al (1981) Quantitative analysis of melanoma-associated antigen p97 in normal and neoplastic tissues. Proc Natl Acad Sci USA 78:539–543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Kim DK, Seo MY, Lim SW et al (2001) Serum melanotransferrin, p97 as a biochemical marker of Alzheimer’s disease. Neuropsychopharmacology 25:84–90

    Article  CAS  PubMed  Google Scholar 

  53. Nakamasu K, Kawamoto T, Shen M et al (1999) Membrane-bound transferrin-like protein (MTf): structure, evolution and selective expression during chondrogenic differentiation of mouse embryonic cells. Biochim Biophys Acta 1447:258–264

    Article  CAS  PubMed  Google Scholar 

  54. Zhou ZC, Sun DF, Yang AF et al (2011) Molecular characterization and expression analysis of a complement component 3 in the sea cucumber (Apostichopus japonicus). Fish Shellfish Immunol 31:540–547

    Article  CAS  PubMed  Google Scholar 

  55. Han LL, Yuan Z, Dahms HU et al (2012) Molecular cloning, characterization and expression analysis of a C-type lectin (AJCTL) from the sea cucumber Apostichopus japonicus. Immunol Lett 143:137–145

    Article  CAS  PubMed  Google Scholar 

  56. Ong DS, Wang L, Zhu Y et al (2005) The response of ferritin to LPS and acute phase of Pseudomonas infection. J Endotoxin Res 11:267–280

    Article  CAS  PubMed  Google Scholar 

  57. Smith LC, Chang L, Britten RJ et al (1996) Sea urchin genes expressed in activated coelomocytes are identified by expressed sequence tags. Complement homologues and other putative immune response genes suggest immune system homology within the deuterostomes. J Immunol 156:593–602

    CAS  PubMed  Google Scholar 

  58. Nair SV, Del Valle H, Gross PS et al (2005) Macroarray analysis of coelomocyte gene expression in response to LPS in the sea urchin. Identification of unexpected immune diversity in an invertebrate. Physiol Genomics 22:33–47

    Article  CAS  PubMed  Google Scholar 

  59. Chen CL, Rowley AF, Ratcliffe NA (1998) Detection, purification by immunoaffinity chromatography and properties of β-1,3-glucan-specific lectins from the sera of several insect species. Insect Biochem Mol Biol 28:721–731

    Article  CAS  Google Scholar 

  60. Ottinger CA, Johnson SC, Ewart KV et al (1999) Enhancement of anti Aeromonas salmonicida activity in Atlantic salmon (Salmo salar) macrophages by a mannose-binding lectin. Comp Biochem Physiol Part C 123:53–59

    Article  CAS  Google Scholar 

  61. Fock WL, Chen CL, Lam TJ et al (2001) Roles of an endogenous serum lectin in the immune protection of blue gourami, Trichogaster trichopterus (Pallus) against. Fish Shellfish Immunol 11:101–113

    Article  CAS  PubMed  Google Scholar 

  62. Stratton L, Wu S, Richards RC et al (2004) Oligomerisation and carbohydrate binding in an Atlantic salmon serum C-type lectin consistent with non-self recognition. Fish Shellfish Immunol 17:315–323

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Master Shixin Liu (College of Foreign Languages, Dalian Ocean University, Dalian, China) for his help in revising the manuscript. This project was supported by the Key Laboratory Foundation of the Educational Department of Liaoning Province of China (Grant No.2009S024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, X., Li, D., Cui, J. et al. Molecular cloning, characterization and expression analysis of Melanotransferrin from the sea cucumber Apostichopus japonicus . Mol Biol Rep 41, 3781–3791 (2014). https://doi.org/10.1007/s11033-014-3243-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3243-1

Keywords

Navigation