Skip to main content
Log in

Mitochondrial ATPase 6/8 genes reveal genetic divergence in the Coilia dussumieri (Valenciennes, 1848) populations of north east and northwest coasts of India

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The golden anchovy, Coilia dussumieri, though possessing discontinuous distribution along northeast and northwest coasts of India, it is being managed as unit stock for fishery assessment purposes. By considering the need for stock specific management of the species, mitochondrial ATP synthase 6 and 8 (ATPase 6/8) genes were analyzed for delineating genetic stock structure of the species. Sequence analysis revealed a total of 34 haplotypes across four populations from both the east and west coasts of India. Haplotype diversity (h) was found in the range of 0.7421–0.9368. Similarly, nucleotide diversity (π) varied from 0.0012 to 0.0025. AMOVA results indicated a high total variance of 72.66 % between east and west coast populations and less (1.34 %) among populations within the respective coast. Phylogenetic tree constructed using pair wise FST also indicated the genetic divergence of populations of east and west coasts of India. The findings of the present study will be helpful in developing stock specific management measures for conservation and sustainable utilization of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mohan Joseph M, Jayaprakash AA (2003) Status of exploited marine fishery resources of India. Central Marine Fisheries Research Institute, Kochi, pp 41–45

    Google Scholar 

  2. Palumbi SR (1992) Marine speciation on a small planet. Trends Ecol Evol 7:114–118

    Article  CAS  PubMed  Google Scholar 

  3. Hedgecock D (1986) Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates? Bull Mar Sci 39:550–565

    Google Scholar 

  4. Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annu Rev Ecol Syst 16:113–148

    Article  Google Scholar 

  5. McGlashan DJ, Hughes JM (2000) Reconciling patterns of genetic variation with streamstructure earth history and biology in the Australian freshwater fish Craterocephalus stercusmuscarum (Atherinidae). Mol Ecol 9:1737–1751

    Article  CAS  PubMed  Google Scholar 

  6. Sivasundar A, Bermingham E, Ortı′ G (2001) Population structure and biogeography of migratory freshwater fishes (Prochilodus:Characiformes) in major South American rivers. Mol Ecol 10:407–417

    Article  CAS  PubMed  Google Scholar 

  7. Hughes JM, Hillyer MJ (2006) Mitochondrial DNA and allozymes reveal high dispersal abilities and historical movement across drainage boundaries in two species of freshwater fishes from inland rivers in Queensland, Australia. J Fish Biol 68(B):270–291

    Article  CAS  Google Scholar 

  8. Perdices A, Bermingham E, Montilla A, Doadrio I (2002) Evolutionary history of the genus Rhamdia (Teleostei: Pimelodidae) in Central America. Mol Phylogenet Evol 25:172–189

    Article  CAS  PubMed  Google Scholar 

  9. Espanhol R, Almeida PR, Alves MJ (2007) Evolutionary history of lamprey paired species Lampetra fluviatilis(L) and Lampetra planeri(Bloch) as inferred from mitochondrial DNA variation. Mol Ecol 16:1909–1924

    Article  CAS  PubMed  Google Scholar 

  10. Reza MS, Furukawa S, Mochizuki T, Matsumura H, Watabe S (2008) Genetic comparison between torafugu Takifugu rubripes and its closely related species karasu Takifugu chinensis. Fish Sci 74:743–754

    Article  CAS  Google Scholar 

  11. Corrigan S, Beheregaray LB (2009) A recent shark radiation: molecular phylogeny biogeography and speciation of wobbegong sharks (family: Orectolobidae). Mol Phylogenet Evol 52:205–216

    Article  CAS  PubMed  Google Scholar 

  12. Apostolidis AP, Loukovitis D, Tsigenopoulos CS (2008) Genetic characterization of brown trout (Salmo trutta) populations from the Southern Balkans using mtDNA sequencing and RFLP analysis. Hydrobiologia 600:169–176

    Article  CAS  Google Scholar 

  13. Betancur RR, Acero PA, Bermingham E, Cooke R (2007) Systematics and biogeography of New World sea catfishes (Siluriformes:Ariidae) as inferred from mitochondrial nuclear and morphological evidence. Mol Phylogenet Evol 45:339–357

    Article  Google Scholar 

  14. Nguyen TTT, Na-Nakorn U, Sukmanomon S, ZiMing C (2008) A study on phylogeny gene regions and biogeography of mahseer species (Pisces: Cyprinidae) using sequences of three mitochondrial DNA. Mol Phylogenet Evol 48:1223–1231

    Article  CAS  PubMed  Google Scholar 

  15. Hughes JM, Hillyer MJ (2006) Mitochondrial DNA and allozymes reveal low levels of diversity in two species of freshwater fish from inland rivers. J Fish Biol 68:270–291

    Article  CAS  Google Scholar 

  16. Chow S, Ushiama H (2004) Global population structure of albacore (Thunnus alalunga) inferred by RFLP analysis of the mitochondrial ATPase gene. Mar Biol 123(1):39–45

    Article  Google Scholar 

  17. Dammannagoda ST, Hurwood DA, Mather PB (2008) Evidence for fine geographical scale heterogeneity in gene frequencies in yellowfin tuna (Thunnus albacares) from the north Indian Ocean around Sri Lanka. Fish Res 90:147–157

    Article  Google Scholar 

  18. Vergara-Chen C, Aguirre WE, González-Wangüemert M, Bermingham E (2009) A mitochondrial DNA based phylogeny of weakfish species of the Cynoscion group (Pisces: Sciaenidae). Mol Phyl Evol 53:602–607

    Article  CAS  Google Scholar 

  19. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acid Res 16(3):1215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Page TJ, Sharma Suman, Hughes JM (2004) Deep phylogenetic structure has conservation implications for ornate rainbow fish (melanotaeniidae; Rhadinocentrus ornatus) in Queensland, eastern Australia. Mar Freshw Res 55:165–172

    Article  Google Scholar 

  21. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  22. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  23. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  24. Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Article  CAS  PubMed  Google Scholar 

  27. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    PubMed Central  CAS  Google Scholar 

  28. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  29. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  30. Avise JC, Ball RM, Arnold J (1988) Current versus historical population sizes in vertebrate species with high gene flow: a comparison based on mitochondrial DNA lineages and inbreeding theory for neutral mutations. Mol Biol Evol 5:331–344

    CAS  PubMed  Google Scholar 

  31. Clement M, Posada D, Crandall KA (2000) TCS: a computer programme to estimate gene genealogies. Mole Ecol 9:1657–1660

    Article  CAS  Google Scholar 

  32. Simonsen KL, Churchill GA, Aquadro CF (1995) Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141:413–429

    PubMed Central  CAS  PubMed  Google Scholar 

  33. McCafferty SS, Martin AE, Bermingham E (2012) Phylogeographic diversity of the lower Central American cichlid Andinoacara coeruleopunctatus (Cichlidae). Int J Evol Biol 2012:780169

    Article  PubMed Central  PubMed  Google Scholar 

  34. Quenouille B, Bermingham E, Planes S (2004) Molecular systematics of the damselfishes (Teleostei: Pomacentridae): Bayesian phylogenetic analyses of mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 31:66–88

    Article  CAS  PubMed  Google Scholar 

  35. Habib M, Lakra WS, Mohindra V, Lal KK, Punia P, Singh RK, Asif AK (2012) Assessment of ATPase 8 and ATPase 6 mtDNA Sequences in Genetic Diversity Studies of Channa marulius (Channidae: Perciformes). Proc Natl Acad Sci India Sect B. doi:10.1007/s40011-012-0061-x

    Google Scholar 

  36. Inoue JG, Miya M, Tsukamoto K, Nishida M (2001) Complete mitochondrial DNA sequence of the Japanese anchovy Engraulis japonicus. Fish Sci 67:825–835

    Google Scholar 

  37. Demandt MH (2012) Sequence variation in mitochondrial ATP synthase subunit 6 & 8 and nuclear genes ITS1 and ITS2 in 17 cyprinid species. J Appl Ichthyol 2012:1–3

    Google Scholar 

  38. Dammannagoda ST, Hurwood DA, Mather PB (2011) Genetic analysis reveals two stocks of skipjack tuna (Katsuwonus pelamis) in the north western Indian Ocean. Can J Fish Aquat Sci (CJFAS) 68(2):210–223

    Article  CAS  Google Scholar 

  39. Cantatore P, Roberti M, Pesole G, Ludovico A, Milella F, Gadaleta MN, Saccone C (1994) Evolutionary analysis of cytochrome b sequences in some perciformes: evidence for a slower rate of evolution than in mammals. J Mol Evol 39:589–597

    Article  CAS  PubMed  Google Scholar 

  40. Vrijenhoe RC (1998) Conservation genetics of freshwater fish. J Fish Biol 53(Suppl A):394–412

    Article  Google Scholar 

  41. Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279

    Article  Google Scholar 

  42. Machordom A, Doadrio I (2001) Evolutionary history and speciation modes in the cyprinid genus Barbus. Proc Biol Sci 268:1297–1306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Grant WS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered 89:415–426

    Article  Google Scholar 

  44. Rogers AR, Harpending HC (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  45. Garber AF, Tringali MD, Stuck KC (2004) Population structure and variation in red snapper (Lutjanus campechanus) from the Gulf of Mexico and Atlantic coast of Florida as determined from mitochondrial DNA control region sequence. Mar Biotechnol 6:175–185

    Article  CAS  PubMed  Google Scholar 

  46. Prodocimo V, Tscha MK, Pie MR, Oliveira-neto JF, Ostrensky A, Boeger WA (2008) Lack of genetic differentiation in the fat snook Centropomus parallelus (Teleostei: Centropomidae) along the Brazilian coast. J Fish Biol 73:2075–2082

    Article  CAS  Google Scholar 

  47. Rocha LA, Rocha CR, Robertson DR, Bowen BW (2008) Comparative phylogeography of Atlantic reef fishes indicates both origin and accumulation of diversity in the Caribbean. BMC Evol Biol 8:157

    Article  PubMed Central  PubMed  Google Scholar 

  48. Reece JS, Brian W, Bowen Kavita Joshi, Goz Vadim, Larson Allan (2010) Phylogeography of two moray eels indicates high dispersal throughout the Indo-Pacific. J Hered 101(4):391–402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Carr SM, Marshall HD (2008) Intraspecific phylogeographic genomics from multiple complete mtDNA genomes in Atlantic cod (Gadus morhua): origins of the ‘‘codmother’,’ transatlantic vicariance and midglacial population expansion. Genetics 180:381–389

    Article  PubMed Central  PubMed  Google Scholar 

  50. Tzeng TD, Haung HL, Wang D, Yeh SY (2007) Genetic diversity and population expansion of the common mackerel (Scomber japonicus) off Taiwan. J Fish Soc Taiwan 34(3):237–245

    CAS  Google Scholar 

  51. Chenoweth SF, Hughes JM (2003) Oceanic interchange and nonequilibrium population structure in the estuarine dependent Indo-Pacific tasselfish, Polynemus sheridani. Mol Ecol 12:2387–2397

    Article  PubMed  Google Scholar 

  52. Durand JD, Tine M, Panfili J, Thiaw OT, Lae R (2005) Impact of glaciations and geographic distance on the genetic structure of a tropical estuarine fish, Ethmalosa fimbriata (Clupeidae, S. Bowdich, 1825). Mol Phylogenet Evol 36:277–287

    Article  CAS  PubMed  Google Scholar 

  53. Kumar Girish, Kunal SP, Menezes MR (2012) Low genetic variation suggests single stock of Kawakawa Euthynnus affinis (Cantor, 1849) along the Indian coast. Turk J Fish Aquat Sci 12:555–564

    Google Scholar 

  54. Alvarado-Bremer JR, Stequert B, Robertson NW, Ely B (1998) Genetic evidence for inter-oceanic subdivision of bigeye tuna (Thunnus obesus) populations. Mar Biol 132:547–557

    Article  Google Scholar 

  55. Martínez P, González EG, Castilho R (2005) Genetic diversity and historical demography of Atlantic bigeye tuna (Thunnus obesus). Mol Phylogenet Evol 39:404–416

    Article  PubMed  Google Scholar 

  56. Chiang HC, Hsu CC, Lin HD, Ma GC, Chiang TY, Yang HY (2006) Population structure of bigeye tuna (Thunnus obesus) in the South China Sea, Philippine Sea and western Pacific Ocean inferred from mitochondrial DNA. Fish Res 79:219–225

    Article  Google Scholar 

  57. Nesbø CL, Rueness EK, Iversen SA, Skagen DW, Jakobse KS (2000) Phylogeography and population history of Atlantic mackerel (Scomber scombrus L.): a genealogical approach eveals genetic structuring among the eastern Atlantic stocks. Proc R Soc Lond B 267:281–292

    Article  Google Scholar 

  58. Alvarado-Bremer JR, Mejuto J, Baker AJ (1995) Mitochondrial DNA control region sequences indicate extensive mixing of swordfish (Xiphias gladius) populations in the Atlantic Ocean. Can J Fish Aquat Sci 52:1720–1732

    Article  Google Scholar 

  59. Alvarado-Bremer JR, Mejuto J, Greig TW, Ely B (1996) Global population structure of the swordfish (Xiphias gladius) as revealed by analysis of the mitochondrial DNA control region. J Exp Mar Biol Ecol 197:295–310

    Article  Google Scholar 

  60. Rosel PE, Block BA (1996) Mitochondrial control region variability and global population structure in the swordfish, Xiphias gladius. Mar Biol 125:11–22

    Article  CAS  Google Scholar 

  61. Finnerty JR, Block BA (1992) Direct sequencing of mitochondrial DNA detects highly divergent haplotypes in blue marlin (Makaira nigricans). Mol Mar Bio Biotechnol 1(3):206–214

    CAS  Google Scholar 

  62. Graves JE, Mcdowell JR (1995) Inter-ocean genetic-divergence of istiophorid billfishes. Mar Biol 122:193–203

    Google Scholar 

  63. Gerber AS, Templeton AR (1996) Population sizes and within deme movement of Trimerotropis saxatilis (Acrididae), a grasshopper with a fragmented distribution. Oecologia 105:343–350

    Article  Google Scholar 

  64. Hedin MC (1997) Speciational history in a diverse clade of habitat-specialized spiders (Araneae: Nesticidae: Nesticus): Inferences from geographic-based sampling. Evolution 51:1929–1945

    Article  Google Scholar 

  65. Vilá C, Amorim IR, Leonard JA (1999) Mitochondrial DNA phylogeography and population history of the Gray Wolf Canis lupus. Mol Ecol 8:2089–2103

    Article  PubMed  Google Scholar 

  66. Gómez-Zurita J, Petitpierre E, Juan C (2000) Nested cladistic analysis, phylogeography and speciation in the Timarcha goettingensis complex (Coleoptera, Chrysomelidae). Mol Ecol 9:557–570

    Article  PubMed  Google Scholar 

  67. Templeton AR, Boerwinkle E, Sing CF (1987) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping-I. Basic theory and an analysis of alcohol dehydrogenase activity in Drosophila. Genetics 117:343–351

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Templeton AR, Sing CF (1993) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping-IV. Nested analyses with cladogram uncertainty and recombination. Genetics 134:659–669

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Crandall KA (1996) Multiple interspecies transmissions of human and simion T-cell leukemia/lymphoma virus type I sequences. Mol Biol Evol 13(1):115–131

    Article  CAS  PubMed  Google Scholar 

  70. Weersing K, Toonen RJ (2009) Population genetics, larval dispersal, and connectivity in marine systems. Mar Ecol Prog Ser 393:1–12

    Article  Google Scholar 

  71. Gilg MR, Hilbish TJ (2003) The geography of marine larval dispersal: coupling genetics with fine-scale physical oceanography. Ecology 84:2989–2998

    Article  Google Scholar 

  72. Sedberry GR, Carlin JL, Chapman RW, Eleby B (1996) Population structure of pan-oceanic wreck fish, Polyprion americanus (Teleostei: Polyprionidae), as indicated by mtDNA variation. J Fish Biol 49(Supplement A):318–329

    Article  Google Scholar 

  73. Yu HT, Lee YJ, Huang SW, Chiu TS (2002) Genetic analysis of the populations of Japanese Anchovy (Engraulidae: Engraulis japonicus) using microsatellite DNA. Mar Biotechnol 4:471–479

    Article  CAS  PubMed  Google Scholar 

  74. Imbrie J, Boyle EA, Clemens SC, Duffy A, Howard WR, Kukla G, Kutzbach J, Martinson DG, McIntyre A, Mix AC, Molfino B, Morley JJ, Peterson LC, Pisias NG, Prell WL, Raymo ME, Shackleton NJ, Toggweiler JR (1992) On the structure and origin of major glaciation cycles, 1 Linear responses to Milankovitch forcing. Paleoceanography 7:701–738

    Article  Google Scholar 

  75. Lambeck K, Esat TM, Potter EK (2002) Links between climate and sea levels for the past three million years. Nature 419:199–206

    Article  CAS  PubMed  Google Scholar 

  76. Wang PX (1999) Response of Western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features. Mar Geol 156:5–39

    Article  Google Scholar 

  77. Liu JX, Gao TX, Yokogawa K, Zhang YP (2006) Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Latolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Mol Phylogenet Evol 39:799–811

    Article  CAS  PubMed  Google Scholar 

  78. Liu JX, Gao TX, Zhuang ZM, Jin XS, Yokogawa K, Zhang YP (2006) Late Pleistocene divergence and subsequent population expansion of two closely related fish species, Japanese anchovy (Engraulis japonicus) and Australian anchovy (Engraulis australis). Mol Phylogenet Evol 40:712–723

    Article  CAS  PubMed  Google Scholar 

  79. Liu JX, Gao TX, Wu SF, Zhang YP (2007) Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck & Schlegel, 1845). Mol Ecol 16:275–288

    Article  CAS  PubMed  Google Scholar 

  80. Han ZQ, Gao TX, Yanagimoto T, Sakurai Y (2008) Genetic population structure of Nibea albiflora in the Yellow Sea and East China Sea. Fish Sci 74:544–552

    Article  CAS  Google Scholar 

  81. Shui BN, Han ZQ, Gao TX, Miao ZQ, Yanagimoto T (2009) Mitochondrial DNA variation in the East China Sea and Yellow Sea populations of Japanese Spanish mackerel Scomberomorus niphonius. Fish Sci 75:593–600

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the research scholars of NBFGR Kochi Unit, Kochi for their help in carrying out the above work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kathirvelpandian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kathirvelpandian, A., Gopalakrishnan, A., Lakra, W.S. et al. Mitochondrial ATPase 6/8 genes reveal genetic divergence in the Coilia dussumieri (Valenciennes, 1848) populations of north east and northwest coasts of India. Mol Biol Rep 41, 3723–3731 (2014). https://doi.org/10.1007/s11033-014-3237-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3237-z

Keywords

Navigation