Molecular Biology Reports

, Volume 41, Issue 5, pp 2697–2707 | Cite as

Conservation and function of Dazl in promoting the meiosis of goat male germline stem cells

  • Zhiwei Niu
  • Yue Hu
  • Mingzhi Liao
  • Meng Yu
  • Haijing Zhu
  • Long Wang
  • Jiang Wu
  • Chunling Bai
  • Guangpeng Li
  • Jinlian Hua


Dazl (deleted in azoospermia-like) is a conserved gene in mammalian meiosis, which encodes RNA binding protein required for spermatocyte meiosis. Up to date, the expression and function of Dazl in the goat testis are unknown. The objectives of this study were to investigate the expression pattern of Dazl in dairy goat testis and their function in male germline stem cells (mGSCs). The results first revealed that the expression level of Dazl in adult testes was significantly higher than younger and immature goats, and azoospermia and male intersex testis. The dairy goat Dazl is highly conserved analysed by several online and bioinformatics software, respectively. Over-expression of Dazl promoted the expression of meiosis-related genes in dairy goat mGSCs. The expression of Stra8 was up-regulated by over-expression of Dazl analysed by Luciferase reporter assay. Taken together, results suggest the Dazl plays an important role in dairy goat spermatogenesis and that over-expression of Dazl may promote Stra8 expression in dairy goat mGSCs.


Dazl Meiosis Spermatogenesis Male germline stem cells (mGSCs) Dairy goat 



This work was supported by the Grants from the Program (31272518, 30972097) of National Natural Science Foundation of China, Doctoral Fund of Ministry of Education of China (RFDP, 20120204110030), The authors appreciate every member in the Shaanxi Centre of Stem Cells Engineering & Technology for their help.

Supplementary material

11033_2014_3156_MOESM1_ESM.tif (788 kb)
Supplementary material 1 (TIFF 787 kb)
11033_2014_3156_MOESM2_ESM.tif (2 mb)
Supplementary material 2 (TIFF 2016 kb)
11033_2014_3156_MOESM3_ESM.tif (2.2 mb)
Supplementary material 3 (TIFF 2212 kb)
11033_2014_3156_MOESM4_ESM.tif (1.5 mb)
Supplementary material 4 (TIFF 1486 kb)
11033_2014_3156_MOESM5_ESM.tif (829 kb)
Supplementary material 5 (TIFF 829 kb)
11033_2014_3156_MOESM6_ESM.tif (785 kb)
Supplementary material 6 (TIFF 785 kb)


  1. 1.
    Crackower MA, Kolas NK, Noguchi J, Sarao R, Kikuchi K, Kaneko H, Kobayashi E, Kawai Y, Kozieradzki I, Landers R (2003) Essential role of Fkbp6 in male fertility and homologous chromosome pairing in meiosis. Science 300(5623):1291–1295PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Zhang W, Zhang S, Xiao C, Yang Y, Zhoucun A (2007) Mutation screening of the FKBP6 gene and its association study with spermatogenic impairment in idiopathic infertile men. Reproduction 133(2):511–516CrossRefPubMedGoogle Scholar
  3. 3.
    Miyamoto T, Hasuike S, Yogev L, Maduro MR, Ishikawa M, Westphal H, Lamb DJ (2003) Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet 362(9397):1714–1719CrossRefPubMedGoogle Scholar
  4. 4.
    Reynolds N, Cooke HJ (2005) Role of the DAZ genes in male fertility. Reprod Biomed Online 10(1):72–80CrossRefPubMedGoogle Scholar
  5. 5.
    Reijo R, Lee T-Y, Salo P, Alagappan R, Brown LG, Rosenberg M, Rozen S, Jaffe T, Straus D, Hovatta O (1995) Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nat Genet 10(4):383–393CrossRefPubMedGoogle Scholar
  6. 6.
    Yen PH, Chai NN, Salido EC (1996) The human autosomal gene DAZLA: testis specificity and a candidate for male infertility. Hum Mol Genet 5(12):2013–2017CrossRefPubMedGoogle Scholar
  7. 7.
    Xu EY, Moore FL, Pera RAR (2001) A gene family required for human germ cell development evolved from an ancient meiotic gene conserved in metazoans. Proc Natl Acad Sci 98(13):7414–7419PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Saxena R, Brown LG, Hawkins T, Alagappan RK, Skaletsky H, Reeve MP, Reijo R, Rozen S, Dinulos MB, Disteche CM (1996) The DAZ gene cluster on the human Y chromosome arose from an autosomal gene that was transposed, repeatedly amplified and pruned. Nat Genet 14(3):292–299CrossRefPubMedGoogle Scholar
  9. 9.
    Reijo RA, Dorfman DM, Slee R, Renshaw AA, Loughlin KR, Cooke H, Page DC (2000) DAZ family proteins exist throughout male germ cell development and transit from nucleus to cytoplasm at meiosis in humans and mice. Biol Reprod 63(5):1490–1496CrossRefPubMedGoogle Scholar
  10. 10.
    Houston DW, King ML (2000) A critical role for Xdazl, a germ plasm-localized RNA, in the differentiation of primordial germ cells in Xenopus. Development 127(3):447–456PubMedGoogle Scholar
  11. 11.
    Yen PH (2004) Putative biological functions of the DAZ family. Int J Androl 27(3):125–129CrossRefPubMedGoogle Scholar
  12. 12.
    Tschanter P, Kostova E, Luetjens CM, Cooper TG, Nieschlag E, Gromoll J (2004) No association of the A260G and A386G DAZL single nucleotide polymorphisms with male infertility in a Caucasian population. Hum Reprod 19(12):2771–2776CrossRefPubMedGoogle Scholar
  13. 13.
    Schrans-Stassen BH, Saunders PT, Cooke HJ, de Rooij DG (2001) Nature of the spermatogenic arrest in Dazl−/− mice. Biol Reprod 65(3):771–776CrossRefPubMedGoogle Scholar
  14. 14.
    Vogel T, Speed R, Ross A, Cooke H (2002) Partial rescue of the Dazl knockout mouse by the human DAZL gene. Mol Hum Reprod 8(9):797–804CrossRefPubMedGoogle Scholar
  15. 15.
    Kee K, Angeles VT, Flores M, Nguyen HN, Pera RAR (2009) Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature 462(7270):222–225PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Haston KM, Tung JY, Reijo Pera RA (2009) Dazl functions in maintenance of pluripotency and genetic and epigenetic programs of differentiation in mouse primordial germ cells in vivo and in vitro. PLoS One 4(5):e5654PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Navarro-Costa P, Nogueira P, Carvalho M, Leal F, Cordeiro I, Calhaz-Jorge C, Goncalves J, Plancha CE (2010) Incorrect DNA methylation of the DAZL promoter CpG island associates with defective human sperm. Hum Reprod 25(10):2647–2654PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Park BW, Shen W, Linher-Melville K, Li J (2013) Deleted in azoospermia-like enhances in vitro derived porcine germ cell formation and meiosis. Stem Cells Dev 22(6):939–950PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Xu X, Tan X, Lin Q, Schmidt B, Engel W, Pantakani DV (2013) Mouse Dazl and its novel splice variant functions in translational repression of target mRNAs in embryonic stem cells. Biochim Biophys Acta 1829:425–435CrossRefPubMedGoogle Scholar
  20. 20.
    Kim B, Cooke HJ, Rhee K (2012) DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress. Development 139(3):568–578CrossRefPubMedGoogle Scholar
  21. 21.
    McNeilly JR, Watson EA, White YA, Murray AA, Spears N, McNeilly AS (2011) Decreased oocyte DAZL expression in mice results in increased litter size by modulating follicle-stimulating hormone-induced follicular growth. Biol Reprod 85(3):584–593CrossRefPubMedGoogle Scholar
  22. 22.
    Chen J, Melton C, Suh N, Oh JS, Horner K, Xie F, Sette C, Blelloch R, Conti M (2011) Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition. Genes Dev 25(7):755–766PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Gill ME, Hu YC, Lin Y, Page DC (2011) Licensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells. Proc Natl Acad Sci USA 108(18):7443–7448PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Li M, Liu C, Zhu H, Sun J, Yu M, Niu Z, Liu W, Peng S, Hua J (2012) Expression pattern of Boule in dairy goat testis and its function in promoting the meiosis in male germline stem cells (mGSCs). J Cell Biochem 114:294–302CrossRefGoogle Scholar
  25. 25.
    Hua J, Zhu H, Pan S, Liu C, Sun J, Ma X, Dong W, Liu W, Li W (2011) Pluripotent male germline stem cells from goat fetal testis and their survival in mouse testis. Cell Reprogram 13(2):133–144CrossRefPubMedGoogle Scholar
  26. 26.
    Zhu H, Liu C, Li M, Sun J, Song W, Hua J (2012) Optimization of the conditions of isolation and culture of dairy goat male germline stem cells (mGSC). Anim Reprod Sci 137:45–52CrossRefPubMedGoogle Scholar
  27. 27.
    Liu C, Zhu H, Liu W, Zheng W, Wang J, Yang C, Hua J (2011) Male germ cells specification of embryonic gonad from Guanzhong dairy goat. Chin J Anim Vet Sci 42(9):1328–1336Google Scholar
  28. 28.
    Hu Y, Sun J, Wang J, Wang L, Bai Y, Yu M, Lian Z, Zhang S, Hua J (2012) Characterization of female germ-like cells derived from mouse embryonic stem cells through expression of GFP under the control of Figla promoter. J Cell Biochem 113(4):1111–1121CrossRefPubMedGoogle Scholar
  29. 29.
    Cao H, Chu Y, Zhu H, Sun J, Pu Y, Gao Z, Yang C, Peng S, Dou Z, Hua J (2011) Characterization of immortalized mesenchymal stem cells derived from foetal porcine pancreas. Cell Prolif 44(1):19–32CrossRefPubMedGoogle Scholar
  30. 30.
    Morton BR (1993) Chloroplast DNA codon use: evidence for selection at the psb A locus based on tRNA availability. J Mol Evol 37(3):273–280CrossRefPubMedGoogle Scholar
  31. 31.
    Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17(1):32–43CrossRefPubMedGoogle Scholar
  32. 32.
    Jia W, Cheng D, Chen S, Lei L, Wang H (2011) Retinoic acid induces myoblasts transdifferentiation into premeiotic Stra8-positive cells. Cell Biol Int 35:365–372CrossRefPubMedGoogle Scholar
  33. 33.
    Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2(1):13–34PubMedGoogle Scholar
  34. 34.
    Lavner Y, Kotlar D (2005) Codon bias as a factor in regulating expression via translation rate in the human genome. Gene 345(1):127–138CrossRefPubMedGoogle Scholar
  35. 35.
    Brook M, Smith JW, Gray NK (2009) The DAZL and PABP families: RNA-binding proteins with interrelated roles in translational control in oocytes. Reproduction 137(4):595–617CrossRefPubMedGoogle Scholar
  36. 36.
    Kerr CL, Cheng L (2010) The dazzle in germ cell differentiation. J Mol Cell Biol 2(1):26–29CrossRefPubMedGoogle Scholar
  37. 37.
    Kuales G, De Mulder K, Glashauser J, Salvenmoser W, Takashima S, Hartenstein V, Berezikov E, Salzburger W, Ladurner P (2011) Boule-like genes regulate male and female gametogenesis in the flatworm Macrostomum lignano. Dev Biol 357(1):117–132PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Reynolds N, Collier B, Bingham V, Gray NK, Cooke HJ (2007) Translation of the synaptonemal complex component Sycp3 is enhanced in vivo by the germ cell specific regulator Dazl. RNA 13(7):974–981PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Zeng M, Lu Y, Liao X, Li D, Sun H, Liang S, Zhang S, Ma Y, Yang Z (2009) DAZL binds to 3′ UTR of Tex19. 1 mRNAs and regulates Tex19. 1 expression. Mol Biol Rep 36(8):2399–2403CrossRefPubMedGoogle Scholar
  40. 40.
    Reynolds N, Collier B, Maratou K, Bingham V, Speed RM, Taggart M, Semple CA, Gray NK, Cooke HJ (2005) Dazl binds in vivo to specific transcripts and can regulate the pre-meiotic translation of Mvh in germ cells. Hum Mol Genet 14(24):3899–3909CrossRefPubMedGoogle Scholar
  41. 41.
    Medrano JV, Ramathal C, Nguyen HN, Simon C, Reijo Pera RA (2012) Divergent RNA-binding proteins, DAZL and VASA, induce meiotic progression in human germ cells derived in vitro. Stem Cells 30(3):441–451PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Anderson EL, Baltus AE, Roepers-Gajadien HL, Hassold TJ, De Rooij DG, van Pelt AM, Page DC (2008) Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci 105(39):14976–14980PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Lin Y, Gill ME, Koubova J, Page DC (2008) Germ cell-intrinsic and -extrinsic factors govern meiotic initiation in mouse embryos. Science 322(5908):1685–1687CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Zhiwei Niu
    • 1
  • Yue Hu
    • 1
  • Mingzhi Liao
    • 3
  • Meng Yu
    • 1
  • Haijing Zhu
    • 1
  • Long Wang
    • 1
  • Jiang Wu
    • 1
  • Chunling Bai
    • 2
  • Guangpeng Li
    • 2
  • Jinlian Hua
    • 1
  1. 1.College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of ChinaNorthwest A&F UniversityYanglingChina
  2. 2.Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of EducationInner Mongolia UniversityHohhotChina
  3. 3.3, College of Life ScienceNorthwest A&F UniversityYanglingChina

Personalised recommendations