Skip to main content
Log in

Reference gene selection for qRT-PCR in Caragana korshinskii Kom. under different stress conditions

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Caragana korshinskii Kom., which is widely distributed in the northwest China and Mongolia, is an important forage bush belonging to the legume family with high economic and ecological value. Strong tolerance ability to various stresses makes C. korshinskii Kom. a valuable species for plant stress research. In this study, suitable reference genes for quantitative real-time reverse transcription PCR (qRT-PCR) were screened from 11 candidate reference genes, including ACT, GAPDH, EF1α, UBQ, TUA, CAP, TUB, TUB3, SKIP1, SKIP5-1 and SKIP5-2. A total of 129 samples under drought, heat, cold, salt, ABA and high pH treatment were profiled, and software such as geNORM, NormFinder and BestKeeper were used for reference gene evaluation and selection. Different suitable reference genes were selected under different stresses. Across all 129 samples, GAPDH, EF1α and SKIP5-1 were found to be the most stable reference genes, and EF1α+SKIP5-1 is the most stable reference gene combination. Conversely, TUA, TUB and SKIP1 were not suitable for using as reference genes owing to their great expression variation under some stress conditions. The relative expression levels of CkWRKY1 were detected using the stable and unstable reference genes and their applicability was confirmed. These results provide some stable reference genes and reference gene combinations for qRT-PCR under different stresses in C. korshinskii Kom. for future research work, and indicate  that CkWRKY1 plays essential roles in response to stresses in C. korshinskii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

qRT-PCR:

Reverse transcription quantitative real-time PCR

ACT:

Actin

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

EF1α:

Elongation factor 1-alpha

UBQ:

Ubiquitin

TUA:

Alpha-tubulin

CAP:

Adenylyl cyclase-associated protein

TUB:

Beta-tubulin

TUB3:

Tubulin beta-3

SKIP1:

SKP1/ASK-interacting protein 1

SKIP5-1/SKIP5-2:

SKP1/ASK-interacting protein 5

References

  1. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250

    Article  PubMed  CAS  Google Scholar 

  2. Artico S, Nardeli SM, Brilhante O, Grossi-de-Sa MF, Alves-Ferreira M (2010) Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 10(1):49

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Castro-Quezada P, Aarrouf J, Claverie M, Favery B, Mugniéry D, Lefebvre V, Caromel B (2013) Identification of reference genes for normalizing RNA expression in potato roots infected with cyst nematodes. Plant Mol Biol Rep. doi:10.1007/s11105-013-0566-3

    Google Scholar 

  4. Chen L, Zhong HY, Kuang JF, Li JG, Lu WJ, Chen JY (2011) Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta 234(2):377–390. doi:10.1007/s00425-011-1410-3

    Article  PubMed  CAS  Google Scholar 

  5. Chi X, Hu R, Yang Q, Zhang X, Pan L, Chen N, Chen M, Yang Z, Wang T, He Y, Yu S (2012) Validation of reference genes for gene expression studies in peanut by quantitative real-time RT-PCR. Mol Genet Genomics 287(2):167–176. doi:10.1007/s00438-011-0665-5

    Article  PubMed  CAS  Google Scholar 

  6. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139(1):5–17

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37:112–119

    PubMed  CAS  Google Scholar 

  8. Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51(1):21–37

    Article  PubMed  CAS  Google Scholar 

  9. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5(5):199–206

    Article  PubMed  CAS  Google Scholar 

  10. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10(4):366–371

    Article  PubMed  CAS  Google Scholar 

  11. Exposito-Rodriguez M, Borges AA, Borges-Perez A, Perez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131. doi:10.1186/1471-2229-8-131

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Fang X, Li J, Xiong Y, Xu D, Fan X, Li F (2007) Responses of Caragana korshinskii Kom. to shoot removal: mechanisms underlying regrowth. Ecol Res 23(5):863–871. doi:10.1007/s11284-007-0449-x

    Article  Google Scholar 

  13. Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C (2008) The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J 6(6):609–618

    Article  PubMed  CAS  Google Scholar 

  14. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6(4):279–284

    Article  PubMed  CAS  Google Scholar 

  15. Huijuan G (2012) Spatial distribution of arbuscular mycorrhiza and glomalin in the rhizosphere of Caragana korshinskii Kom. in the Otindag sandy land, China. Afr J Microbiol Res 6(28):5745–5753. doi:10.5897/ajmr11.1560

    Google Scholar 

  16. Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345(2):646–651

    Article  PubMed  CAS  Google Scholar 

  17. Li H, Qin Y, Xiao X, Tang C (2011) Screening of valid reference genes for real-time RT-PCR data normalization in Hevea brasiliensis and expression validation of a sucrose transporter gene HbSUT3. Plant Sci 181(2):132–139. doi:10.1016/j.plantsci.2011.04.014

    Article  PubMed  CAS  Google Scholar 

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  19. Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56(421):2907–2914

    Article  PubMed  CAS  Google Scholar 

  20. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26(6):509–515

    Article  PubMed  CAS  Google Scholar 

  22. Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313(4):856–862

    Article  PubMed  CAS  Google Scholar 

  23. Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6(1):27

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A (2008) Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227(6):1343–1349

    Article  PubMed  CAS  Google Scholar 

  25. Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, Langum TJ, Smidt L, Boomsma DD, Emme NJ (2011) WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnol J 10(1):2–11

    Article  PubMed  CAS  Google Scholar 

  26. Schmidt GW, Delaney SK (2010) Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genomics 283(3):233–241

    Article  PubMed  CAS  Google Scholar 

  27. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108. doi:10.1038/nprot.2008.73

    Article  PubMed  CAS  Google Scholar 

  28. Scholtz JJ, Visser B (2012) Reference gene selection for qPCR gene expression analysis of rust-infected wheat. Physiol Mol Plant Pathol 81:22–25

    Article  CAS  Google Scholar 

  29. Udvardi MK, Czechowski T, Scheible WR (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20(7):1736–1737. doi:10.1105/tpc.108.061143

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Ülker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7(5):491–498

    Article  PubMed  CAS  Google Scholar 

  31. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034

    Article  PubMed Central  PubMed  Google Scholar 

  32. Wang X, Chen X, Liu Y, Gao H, Wang Z, Sun G (2011) CkDREB gene in Caragana korshinskii is involved in the regulation of stress response to multiple abiotic stresses as an AP2/EREBP transcription factor. Mol Biol Rep 38(4):2801–2811. doi:10.1007/s11033-010-0425-3

    Article  PubMed  CAS  Google Scholar 

  33. Wang X, Dong J, Liu Y, Gao H (2010) A novel dehydration-responsive element-binding protein from Caragana korshinskii is involved in the response to multiple abiotic stresses and enhances stress tolerance in transgenic tobacco. Plant Mol Biol Rep 28(4):664–675. doi:10.1007/s11105-010-0196-y

    Article  CAS  Google Scholar 

  34. Wang X, Wang Z, Dong J, Wang M, Gao H (2009) Cloning of a 9-cis-epoxycarotenoid dioxygenase gene and the responses of Caragana korshinskii to a variety of abiotic stresses. Genes Genet Syst 84(6):397–405

    Article  PubMed  CAS  Google Scholar 

  35. Wang Y, Yu K, Poysa V, Shi C, Zhou Y (2012) Selection of reference genes for normalization of qRT-PCR analysis of differentially expressed genes in soybean exposed to cadmium. Mol Biol Rep 39(2):1585–1594

    Article  PubMed  CAS  Google Scholar 

  36. Wang Z, Gao H, Wu Y, Han J (2007) Genetic diversity and population structure of Caragana korshinskii revealed by AFLP. Crop Sci 47(4):1737–1743

    Article  CAS  Google Scholar 

  37. Wu Y, Hu X, Wang Y (2009) Growth, water relations, and stomatal development of Caragana korshinskii Kom. and Zygophyllum xanthoxylum (Bunge) Maxim. seedlings in response to water deficits. N Z J Agric Res 52(2):185–193

    Article  CAS  Google Scholar 

  38. Xu M, Zhang B, Su X, Zhang S, Huang M (2011) Reference gene selection for quantitative real-time polymerase chain reaction in Populus. Anal Biochem 408(2):337–339

    Article  PubMed  CAS  Google Scholar 

  39. Yang Q, Zhang T, Wang Y, Li G, Yin JJ, Han XM, Qi LW, Li GJ, Wang RG (2013) Construction of a suppression subtractive hybridization library of Caragana korshinskii Under Drought Stress and Cloning of CkWRKY 1 Gene. Scientia Silvae Sinicae 49(7):62–68

    Google Scholar 

  40. Zhang H, Tang M, Chen H, Tian Z, Xue Y, Feng Y (2009) Communities of arbuscular mycorrhizal fungi and bacteria in the rhizosphere of Caragana korshinkii and Hippophae rhamnoides in Zhifanggou watershed. Plant Soil 326(1–2):415–424. doi:10.1007/s11104-009-0022-1

    Google Scholar 

  41. Zheng Y, Xie Z, Gao Y, Jiang L, Shimizu H, Tobe K (2004) Germination responses of Caragana korshinskii Kom. to light, temperature and water stress. Ecol Res 19(5):553–558

    Article  Google Scholar 

  42. Zhong HY, Chen JW, Li CQ, Chen L, Wu JY, Chen JY, Lu WJ, Li JG (2011) Selection of reliable reference genes for expression studies by reverse transcription quantitative real-time PCR in litchi under different experimental conditions. Plant Cell Rep 30(4):641–653. doi:10.1007/s00299-010-0992-8

    Article  PubMed  CAS  Google Scholar 

  43. Zhu J, Zhang L, Li W, Han S, Yang W, Qi L (2013) Reference gene selection for quantitative real-time PCR normalization in Caragana intermedia under different abiotic stress conditions. PloS One 8(1):e53196

    Google Scholar 

Download references

Acknowledgments

We deeply appreciate Dr. Mark Goettel, Editor-in-Chief of Biocontrol Science & Technology, for polishing the manuscript carefully. This work was financially supported by National Natural Science Foundation of China (No. 31360169), Chinese National Programs for High Technology Research and Development (No. 2011AA100203), the Program for New Century Excellent Talents of University (No. ECNT-11-1020) from Ministry of Education (China), and the Innovative Research Group Fund (No. NDPYTD2010-3) from Inner Mongolia Agricultural University (China).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojing Li.

Additional information

Qi Yang, Jiajia Yin and Gao Li contributed equally to this work.

Key message: The stable reference genes for gene expression evaluation of Caragana korshinskii under drought, heat, cold, salt, ABA and high pH treatments were selected respectively from 11 candidate genes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 167 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Q., Yin, J., Li, G. et al. Reference gene selection for qRT-PCR in Caragana korshinskii Kom. under different stress conditions. Mol Biol Rep 41, 2325–2334 (2014). https://doi.org/10.1007/s11033-014-3086-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3086-9

Keywords

Navigation