Skip to main content

Advertisement

Log in

LIG4 and RAD52 DNA repair genes polymorphisms and systemic lupus erythematosus

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is a complex autoimmune disorder with a strong genetic background. Nevertheless, SLE might also be triggered due to environmental factors, such as UV light exposure. DNA double strand breaks (DSBs) may be induced secondarily by UV radiation, increasing DNA immunogenicity and in SLE patients DNA repair is diminished, allowing the accumulation of DSBs and genomic instability. LIG4 and RAD52 genes play important roles in DNA repair mechanisms and a recent microarray analysis showed their differential expression in active SLE patients. In this study we investigated a potential association between LIG4 and RAD52 single nucleotide polymorphisms (SNPs) and SLE predisposition in a Southeast Brazilian population. We assessed four Tag SNPs in LIG4 and three in RAD52 gene region, encompassing most of the gene sequence, in 158 SLE patients and 212 healthy controls. We also performed SNPs analysis considering clinical manifestation, gender and ethnicity in SLE patients. Our data did not show association between LIG4 and RAD52 SNPs and SLE, its clinical manifestations or ethnicity in the tested population. The analysis regarding ethnicity and SLE clinical manifestations indicated Caucasian-derived patients as more susceptible to cutaneous and hematological alterations than the African-derived. To our knowledge, this is the first association study involving LIG4 and RAD52 genes and SLE predisposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tsokos GC (2011) Systemic lupus erythematosus. N Engl J Med 22:2110–2121. doi:10.1056/NEJMra1100359

    Article  Google Scholar 

  2. Robinson M, Cook SS, Currie LM (2011) Systemic lupus erythematosus: a genetic review for advanced practice nurses. J Am Acad Nurse Pract 12:629–637. doi:10.1111/j.1745-7599.2011.00675.x

    Article  Google Scholar 

  3. Vilar MJ, Sato EI (200) Estimating the incidence of systemic lupus erythematosus in a tropical region (Natal, Brazil). Lupus 8:528–532. doi:10.1191/0961203302lu244xx

    Google Scholar 

  4. Pons-Estel GJ, Alarcón GS, Scofield L, Reinlib L, Cooper GS (2010) Understanding the epidemiology and progression of systemic lupus erythematosus. Semin Arthritis Rheum 4:257–268. doi:10.1016/j.semarthrit.2008.10.007

    Article  Google Scholar 

  5. Sandrin-Garcia P, Junta CM, Fachin AL et al (2009) Shared and unique gene expression in systemic lupus erythematosus depending on disease activity. Ann N Y Acad Sci 1173:493–500. doi:10.1111/j.1749-6632.2009.04636.x

    Article  PubMed  CAS  Google Scholar 

  6. Neal JA, Meek K (2011) Choosing the right path: does DNA-PK help make the decision? Mutat Res 1–2:73–86. doi:10.1016/j.mrfmmm.2011.02.010

    Article  CAS  Google Scholar 

  7. Grabarz A, Barascu A, Guirouilh-barbat J, Lopez BS (2012) Initiation of DNA double strand break repair: signaling and single-stranded resection dictate the choice between homologous recombination, non-homologous end-joining and alternative end-joining. Am J Cancer Res 3:249–268

    Google Scholar 

  8. Chistiakov DA, Voronova NV, Chistiakov AP (2009) Ligase IV syndrome. Eur J Med Genet 6:373–378. doi:10.1016/j.ejmg.2009.05.009

    Article  Google Scholar 

  9. Wei YF, Robins P, Carter K et al (1999) Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination. Mol Cell Biol 6:3206–3216

    Google Scholar 

  10. O′Driscoll M, Cerosaletti KM, Girard P et al (2001) DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell 8:1175–1185. doi:10.1016/S1097-2765(01)00408-7

    Article  PubMed  Google Scholar 

  11. Liu J, Heyer W-D (2011) Who’s who in human recombination: BRCA2 and RAD52. Proc Natl Acad Sci USA 2:441–442. doi:10.1073/pnas.1016614108

    Article  Google Scholar 

  12. Hiom K (1999) Dna repair: Rad52—the means to an end. Curr Biol 12:R446–R448. doi:10.1016/S0960-9822(99)80278-4

    Article  Google Scholar 

  13. Davies RC, Pettijohn K, Fike F et al (2012) Defective DNA double-strand break repair in pediatric systemic lupus erythematosus. Arthritis Rheum 2:568–578. doi:10.1002/art.33334

    Article  CAS  Google Scholar 

  14. Bassi C, Dj Xavier, Palomino G, Nicolucci P, Soares C, Sakamoto-Hojo E, Donadi E (2008) Efficiency of the DNA repair and polymorphisms of the XRCC1, XRCC3 and XRCC4 DNA repair genes in systemic lupus erythematosus. Lupus 11:988–995. doi:10.1177/0961203308093461

    Article  Google Scholar 

  15. Stram DO (2004) Tag SNP selection for association studies. Genet Epidemiol 4:365–374. doi:10.1002/gepi.20028

    Article  Google Scholar 

  16. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 9:1725. doi:10.1002/art.1780400928

    Article  Google Scholar 

  17. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  18. Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2:175–191. doi:10.3758/BF03193146

    Article  Google Scholar 

  19. Takeda Y, Dynan WS (2001) Autoantibodies against DNA double-strand break repair proteins. Front Biosci 6:1412–1422. doi:10.2741/takeda

    Article  Google Scholar 

  20. Schildkraut JM, Iversen ES, Wilson MA et al (2010) Association between DNA damage response and repair genes and risk of invasive serous ovarian cancer. PLoS One 4:e10061. doi:10.1371/journal.pone.0010061

    Article  CAS  Google Scholar 

  21. Mark TW, Debora L, Claire T et al (2011) The role of microRNA-binding site polymorphisms in DNA repair genes as risk factors for bladder cancer and breast cancer and their impact on radiotherapy outcomes. Carcinogenesis 3:581–586. doi:10.1093/carcin/bgr300

    Google Scholar 

  22. Crosby ME, Kulshreshtha R, Ivan M, Glazer PM (2009) MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res 3:1221–1229. doi:10.1158/0008-5472.CAN-08-2516

    Article  CAS  Google Scholar 

  23. Warchoł T, Mostowska A, Lianeri M, Lącki JK, Jagodziński PP (2012) XRCC1 Arg399Gln gene polymorphism and the risk of systemic lupus erythematosus in the Polish population. DNA Cell Biol 1:50–56. doi:10.1089/dna.2011.1246

    Article  CAS  Google Scholar 

  24. Böhm M, Wolff I, Scholzen TE et al (2005) Alpha-melanocyte-stimulating hormone protects from ultraviolet radiation-induced apoptosis and DNA damage. J Biol Chem 7:5795–5802. doi:10.1074/jbc.M406334200

    Google Scholar 

  25. Vargas AE, Marrero AR, Salzano FM et al (2006) Frequency of CCR5∆∆32 in Brazilian populations. Braz J Med Biol Res 5:321–325. doi:10.1590/S0100-879X2006000300002

    Article  Google Scholar 

  26. Veit TD, Cordero EAA, Mucenic T et al (2009) Association of the HLA-G 14 bp polymorphism with systemic lupus erythematosus. Lupus 18:424–430. doi:10.1177/0961203308098187

    Article  PubMed  CAS  Google Scholar 

  27. Santos NPC, Ribeiro-Rodrigues EM, Ribeiro-Dos-Santos AKC et al (2010) Assessing individual interethnic admixture and population substructure using a 48-insertion-deletion (INSEL) ancestry-informative marker (AIM) panel. Human Mutat 2:184–190. doi:10.1002/humu.21159

    Article  CAS  Google Scholar 

  28. Sestak AL, Nath SK, Kelly JA, Bruner GR, James JA, Harley JB (2008) Patients with familial and sporadic onset SLE have similar clinical profiles but vary profoundly by race. Lupus 11:1004–1009. doi:10.1177/0961203308091969

    Article  Google Scholar 

  29. Bezerra ELM, Vilar MJP, Barbosa CFO et al (2005) Systemic lupus erythematosus (SLE): Clinical and laboratory profile of patients followed at the onofre lopes university hospital (UFRN - Natal/Brazil) and early organ damage in patients with recently diagnosed disease. Rev Bras Reumatol 84:339–342. doi:10.1590/S0482-50042005000600002

    Article  Google Scholar 

  30. Fonseca AMS, De  Azevêdo Silva  J,  Pancotto AT et al (2013) Polymorphisms in STK17A gene are associated with systemic lupus erythematosus and its clinical manifestations. Gene 527:435–439. doi:10.1016/j.gene.2013.06.074

Download references

Acknowledgments

This work was supported by the Brazilian funding agencies: Capes, CNPq and FACEPE. We also like to thank Dr. Rafael Guimarães for reading and providing insightful suggestions to the manuscript.

Conflict of interest

None of the authors has any potential financial conflict of interest related to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Sandrin-Garcia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Azevêdo Silva, J., Pancotto, J.A.T., Donadi, E.A. et al. LIG4 and RAD52 DNA repair genes polymorphisms and systemic lupus erythematosus. Mol Biol Rep 41, 2249–2256 (2014). https://doi.org/10.1007/s11033-014-3076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3076-y

Keywords

Navigation