Skip to main content

Advertisement

Log in

The effect of resveratrol on the expression of AdipoR1 in kidneys of diabetic nephropathy

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Adiponectin is an adipocyte derived protein that plays pivotal roles in anti-oxidation, anti-inflammatory and insulin-sensitizing properties by activating two receptors, AdipoR1 and AdipoR2. Recent studies have shown that the down-regulation of AdipoR1 is a known cause of diabetic nephropathy (DN). Resveratrol (Resv), a natural polyphenol, has been identified as a potent activator of forkhead transcription factor O1 (FoxO1) which can up-regulate the expression of AdipoR1. In the present study, we have investigated whether Resv can up-regulate the expression of AdipoR1 by activating FoxO1 that is in kidney of DN rats and mesangial cells (MCs) cultured in high glucose (HG, 30 mmol/L) medium. In vivo, we show that, in the renal cortex of diabetic rats, the expression of AdipoR1 was significantly reduced and correlated with an increase in the generation of malondialdehyde (MDA), Collagen IV and fibronectin proteins. However, administration with Resv significantly increased the expression of AdipoR1. This correlated with not only a decrease in generation of MDA, Collagen IV and fibronectin proteins levels but also more improved kidney pathological and biochemical indicators changes. In vitro, we show that HG-induced depression of FoxO1 activity was associated with the expression of Adipor1 in MCs. Treatment with Resv (20 μmol/L) caused an elevation in the activity of FoxO1 and a significantly increase in the expression of AdipoR1. Furthermore, inhibition of FoxO1 through short hairpin RNA markedly reduced the expression of Adipor1 in MCs cultured by Resv. In conclusion, Resv can significantly increase the expression of AdipoR1 by activating FoxO1 in diabetic kidney. These data also suggest that Resv may serve as a promising agent for preventing or treating DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Forbes JM, Coughlan MT, Cooper ME (2008) Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57:1446–1454

    Article  CAS  PubMed  Google Scholar 

  2. Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C (2012) United States Renal Data System 2011 Annual data report: atlas of chronic kidney disease & end-stage renal disease in the United States. Am J Kidney Dis 59(A7):e1–e420

    Google Scholar 

  3. Blazquez-Medela AM, Lopez-Novoa JM, Martinez-Salgado C (2010) Mechanisms involved in the genesis of diabetic nephropathy. Curr Diabetes Rev 6:68–87

    Article  CAS  PubMed  Google Scholar 

  4. Singh DK, Winocour P, Farrington K (2011) Oxidative stress in early diabetic nephropathy: fueling the fire. Nat Rev Endocrinol 7:176–184

    Article  CAS  PubMed  Google Scholar 

  5. Fornoni A, Ijaz A, Tejada T, Lenz O (2008) Role of inflammation in diabetic nephropathy. Curr Diabetes Rev 4:10–17

    Article  CAS  PubMed  Google Scholar 

  6. Wu L, Zhang Y, Ma X, Zhang N, Qin G (2012) The effect of resveratrol on FoxO1 expression in kidneys of diabetic nephropathy rats. Mol Biol Rep 39:9085–9093

    Article  CAS  PubMed  Google Scholar 

  7. Eid AA, Gorin Y, Fagg BM, Maalouf R, Barnes JL (2009) Mechanisms of podocyte injury in diabetes role of cytochrome P450 and NADPH oxidases. Diabetes 58:1201–1211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Briggs DB, Giron RM, Malinowski PR, Nuñez M, Tsao TS (2011) Role of redox environment on the oligomerization of higher molecular weight adiponectin. BMC Biochem 12:24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wu X, Mahadev K, Fuchsel L, Ouedraogo R, Xu SQ et al (2007) Adiponectin suppresses IkappaB kinase activation induced by tumor necrosis factor-alpha or high glucose in endothelial cells: role of cAMP and AMP kinase signaling. Am J Physiol Endocrinol Metab 293:E1836–E1844

    Article  CAS  PubMed  Google Scholar 

  10. Kim YL, Kim TK, Cheong ES, Shin DG, Choi GS (2012) Relation of absolute or relative adiposity to insulin resistance, retinol binding protein-4, leptin, and adiponectin in type 2 diabetes. Diabetes Metab J 36:415–421

    Article  PubMed Central  PubMed  Google Scholar 

  11. Chan KH, Lam KS, Cheng OY, Kwan JS, Ho PW (2012) Adiponectin is protective against oxidative stress induced cytotoxicity in amyloid-beta neurotoxicity. PLoS One 7:e52354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lee S, Park Y, Dellsperger KC, Zhang C (2011) Exercise training improves endothelial function via adiponectin-dependent and independent pathways in type 2 diabetic mice. Am J Physiol Heart Circ Physiol 301:H306–H314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T et al (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762–769

    Article  CAS  PubMed  Google Scholar 

  14. de Oliveira C, de Mattos AB, Silva CB, Mota JF, Zemdegs JC (2012) Nutritional and hormonal modulation of adiponectin and its receptors adipoR1 and adipoR2. Vitam Horm 90:57–94

    Article  CAS  PubMed  Google Scholar 

  15. Crimmins NA, Martin LJ (2007) Polymorphisms in adiponectin receptor genes ADIPOR1 and ADIPOR2 and insulin resistance. Obes Rev 8:419–423

    Article  CAS  PubMed  Google Scholar 

  16. Dai MH, Xia T, Zhang GD, Chen XD, Gan L et al (2006) Cloning, expression and chromosome localization of porcine adiponectin and adiponectin receptors genes. Domest Anim Endocrinol 30:117–125

    Article  CAS  PubMed  Google Scholar 

  17. Debard C, Laville M, Berbe V, Loizon E, Guillet C (2004) Expression of key genes of fatty acid oxidation, including adiponectin receptors, in skeletal muscle of type 2 diabetic patients. Diabetologia 47:917–925

    Article  CAS  PubMed  Google Scholar 

  18. Cui XB, Wang C, Li L, Fan D, Zhou Y (2012) Insulin decreases myocardial adiponectin receptor 1 expression via PI3 K/Akt and FoxO1 pathway. Cardiovasc Res 93:69–78

    Article  CAS  PubMed  Google Scholar 

  19. Guo Z, Zhao Z (2007) Effect of N-acetylcysteine on plasma adiponectin and renal adiponectin receptors in streptozotocin-induced diabetic rats. Eur J Pharmacol 558:208–213

    Article  CAS  PubMed  Google Scholar 

  20. Tamura Y, Murayama T, Minami M, Matsubara T, Yokode M (2012) Ezetimibe ameliorates early diabetic nephropathy in db/db mice. J Atheroscler Thromb 19:608–618

    Article  CAS  PubMed  Google Scholar 

  21. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C et al (2006) Resveratrol improves Mitochondrial function and Protects against metabolie disease by activating SIRT1 and PGC-1 alpha. Cell 127:1109–1122

    Article  CAS  PubMed  Google Scholar 

  22. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  CAS  PubMed  Google Scholar 

  23. Chen W, Rezaizadehnajafi L, Wink M (2013) Influence of resveratrol on oxidative stress resistance and life span in Caenorhabditis elegans. J Pharm Pharmacol 65:682–688

    Article  CAS  PubMed  Google Scholar 

  24. Tomé-Carneiro J, Larrosa M, Yáñez-Gascón MJ, Dávalos A, Gil-Zamorano J (2013) One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res 72C:69–82

    Article  CAS  Google Scholar 

  25. Mohar DS, Malik S (2012) The Sirtuin system: the Holy Grail of resveratrol? J Clin Exp Cardiolog 3:216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ajmo JM, Liang X, Rogers CQ, Pennock B, You M (2008) Resveratrol alleviates alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol 295:833–842

    Article  CAS  Google Scholar 

  27. Huang H, Tindall DJ (2007) CDK2 and FOXO1: a fork in the road for cell fate decisions. Cell Cycle 6:902–906

    Article  CAS  PubMed  Google Scholar 

  28. Furukawa-Hibi Y, Kobayashi Y, Chen C, Motoyama N (2005) FOXO transcription factors in cell-cycle regulation and the response to oxidative stress. Antioxid Redox Signal 7:752–760

    Article  CAS  PubMed  Google Scholar 

  29. Puthanveetil P, Wan A, Rodrigues B (2013) FoxO1 is crucial for sustaining cardiomyocyte metabolism and cell survival. Cardiovasc Res 97:393–403

    Article  CAS  PubMed  Google Scholar 

  30. Ponugoti B, Dong G, Graves DT (2013) Role of forkhead transcription factors in diabetes-induced oxidative stress. Exp Diabetes Res 2012:939751

    Google Scholar 

  31. Tsuchida A, Yamauchi T, Ito Y, Hada Y, Maki T et al (2004) Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin Sensitivity. J Biol Chem 279:30817–30822

    Article  CAS  PubMed  Google Scholar 

  32. Sun X, He J, Mao C, Han R, Wang Z, Liu Y et al (2008) Negative regulation of adiponectin receptor 1 promoter by insulin via a repressive nuclear inhibitory protein element. FEBS Lett 582:3401–3407

    Article  CAS  PubMed  Google Scholar 

  33. Cui XB, Wang C, Li L, Fan D, Zhou Y (2012) Insulin decreases myocardial adiponectin receptor 1 expression via PI3 K/Akt and FoxO1 pathway. Cardiovasc Res 3:69–78

    Article  CAS  Google Scholar 

  34. Felder TK, Hahne P, Soyal SM, Miller K, Höffinger H (2010) Hepatic adiponectin receptors (ADIPOR) 1 and 2 mRNA and their relation to insulin resistance in obese humans. Int J Obes (Lond) 34:846–851

    Article  CAS  Google Scholar 

  35. Roy SK, Chen Q, Fu J, Shankar S, Srivastava RK (2011) Resveratrol inhibits growth of orthotopic pancreatic tumors through activation of FOXO transcription factors. PLoS One 6:e25166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Huang H, Iida KT, Sone H, Ajisaka R (2007) The regulation of adiponectin receptors expression by acute exercise in mice. Exp Clin Endocrinol Diabetes 115:417–422

    Article  CAS  PubMed  Google Scholar 

  37. Chen Q, Ganapathy S, Singh KP, Shankar S, Srivastava RK (2010) Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells. PLoS One 5:e15288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Srivastava RK, Unterman TG, Shankar S (2010) FOXO transcription factors and VEGF neutralizing antibody enhance antiangiogenic effects of resveratrol. Mol Cell Biochem 337:201–212

    Article  CAS  PubMed  Google Scholar 

  39. Qiang L, Banks AS, Accili D (2010) Uncoupling of acetylation from phosphorylation regulates FoxO1 function independent of its subcellular localization. J Biol Chem 285:27396–27401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Xia L, Wang H, Goldberg HJ, Munk S, Fantus IG et al (2006) Mesangial cell NADPH oxidase upregulation in high glucose is PKC dependent and required for Collagen IV expression. Am J Physiol Renal Physiol 290:F345–F356

    Article  CAS  PubMed  Google Scholar 

  41. Gorin Y, Block K, Hernandez J, Bhandari B, Wagner B et al (2005) NOX4 NADPH Oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J Biol Chem 280:39616–39626

    Article  CAS  PubMed  Google Scholar 

  42. Soler MJ, Riera M, Batlle D (2012) New experimental models of diabetic nephropathy in mice models of type 2 diabetes: efforts to replicate human nephropathy. Exp Diabetes Res 2012:616313

    Article  PubMed Central  PubMed  Google Scholar 

  43. Molitch ME, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE (2004) Nephropathy in diabetes. Diabetes Care 27:S79–S83

    Article  PubMed  Google Scholar 

  44. Mazzucco G, Bertani T, Fortunato M, Bernardi M, Leutner M (2002) Different patterns of renal damage in type 2 diabetes mellitus: a multicentric study on 393 biopsies. Am J Kidney Dis 39:713–720

    Article  PubMed  Google Scholar 

  45. Choi R, Kim BH, Naowaboot J, Lee MY, Hyun MR (2011) Effects of ferulic acid on diabetic nephropathy in a rat model of type 2 diabetes. Exp Mol Med 43:676–683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Nakamaki S, Satoh H, Kudoh A, Hayashi Y, Hirai H et al (2011) Adiponectin reduces proteinuria in streptozotocin-induced diabetic Wistar rats. Exp Biol Med 236:614–620

    Article  CAS  Google Scholar 

  47. Klahrs (1999) Mechanisms of progression of chronic renal damage. J Nephrol 12:53–62

    Google Scholar 

  48. Barthel A, Schmoll D, Unterman TG (2005) FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab 16:183–189

    Article  CAS  PubMed  Google Scholar 

  49. Van Der Heide LP, Hoekman MF, Smidt MP (2004) The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 380:297–309

    Article  Google Scholar 

  50. Jacobs FM, van der Heide LP, Wijchers PJ, Burbach JP, Hoekman MF (2003) FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem 278:35959–35967

    Article  CAS  PubMed  Google Scholar 

  51. Rena G, Woods YL, Prescott AR, Peggie M, Unterman TG (2002) Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion. EMBO J 21:2263–2271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Brunet A, Park J, Tran H, Hu LS, Hemmings BA (2001) Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol Cell Bioln 21:952–965

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guijun Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, H., Wu, L., Ma, X. et al. The effect of resveratrol on the expression of AdipoR1 in kidneys of diabetic nephropathy. Mol Biol Rep 41, 2151–2159 (2014). https://doi.org/10.1007/s11033-014-3064-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3064-2

Keywords

Navigation