Skip to main content
Log in

Molecular cloning and characterization of 5-enolpyruvylshikimate-3-phosphate synthase gene from Convolvulus arvensis L.

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS), the target enzyme for glyphosate inhibition, catalyzes an essential step in the shikimate pathway for aromatic amino acid biosynthesis. The full-length cDNA of 1,751 nucleotides (CaEPSPS, Genbank accession number: EU698030) from Convolvulus arvensis was cloned and characterized. The CaEPSPS encodes a polypeptide of 520 amino acids with a calculated molecular weight of 55.5 kDa and an isoelectric point of 7.05. The results of homology analysis revealed that CaEPSPS showed highly homologous with EPSPS proteins from other plant species. Tissue expression pattern analysis indicated that CaEPSPS was constitutively expressed in stems, leaves and roots, with lower expression in roots. CaEPSPS expression level could increase significantly with glyphosate treatment, and reached its maximum at 24 h after glyphosate application. We fused CaEPSPS to the CaMV 35S promoter and introduced the chimeric gene into Arabidopsis. The resultant expression of CaEPSPS in transgenic Arabidopsis plants exhibited enhanced tolerance to glyphosate in comparison with control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gollub E, Zackin H, Sprinson DB (1967) Correlation of genes and enzymes, and studies on regulation of the aromatic path-way in Salmonella. J Biol Chem 242:5323–5328

    PubMed  CAS  Google Scholar 

  2. Yi Y, Qiao D, Bai L, Xu H, Li Y et al (2007) Cloning, expression, and functional characterization of the Dunaliella salina 5-enolpyruvylshikimate-3-phosphate synthase gene in Escherichia coli. J Microbiol 45(2):153–157

    PubMed  CAS  Google Scholar 

  3. Priestman MA, Funke T, Singh IM, Crupper SS, Schonbrunn E (2005) 5-Enolpyruvylshikimate-3-phosphate synthase from Staphylococcus aureus is insensitive to glyphosate. FEBS Lett 579:728–732

    Article  PubMed  CAS  Google Scholar 

  4. Schonbrunn E, Eschenburg S, Shuttleworth WA, Schloss JV, Amrhein N, Evans JN, Kabsch W (2001) Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvyl-shikimate-3-phosphate synthase in atomic detail. Proc Natl Acad Sci USA 98:1376–1380

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. James C (2012) Globle status of commercialized transgenic crops. ISAAA briefs no. 44. ISAAA, Ithaca 44

    Google Scholar 

  6. Howe AR, Gasser CS, Brown SM, Padgette SR, Hart J, Parker GB, Fromm ME, Armstrong CL (2002) Glyphosate as a selective agent for the production of fertile transgenic maize (Zea mays L.) plants. Mol Breed 10:153–164

    Article  CAS  Google Scholar 

  7. Wang HY, Li YF, Xie LX, Xu P (2003) Expression of a bacterial aroA-M1, encoding 5-enolpyruvylshikimate-3-phosphate synthase for the production of glyphosate-resistant tobacco plants. Plant Res 116:455–460

    Article  CAS  Google Scholar 

  8. Ye GN, Hajdukiewicz PT, Broyles D, Rodriguez D, Xu CW, Nehra N, Staub JM (2001) Plastid-expressed 5-enol-pyruvyl-shikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J 25:261–270

    Article  PubMed  CAS  Google Scholar 

  9. Klee HJ, Muskopf YM, Gasser CS (1987) Cloning of an Arabidopsis thaliana gene encoding 5-enolpyruvylshikimate-3-phosphate synthase: sequence analysis and manipulation to obtain glyphosate-tolerant plants. Mol Gen Genet 210:437–442

    Article  PubMed  CAS  Google Scholar 

  10. Duncan K, Lewendon A, Coggins JR (1984) The complete amino acid sequence of Escherichia coli 5-enol-pyruvyl-shikimate-3-phosphate synthase. FEBS Lett 170:59–63

    Article  CAS  Google Scholar 

  11. Garbe T, Jones C, Charles I, Dougan G, Young D (1990) Cloning and characterization of the aroA gene from Mycobacterium tumberculosis. J Bacteriol 172:6774–6782

    PubMed Central  PubMed  CAS  Google Scholar 

  12. Charles IJ, Keyte JW, Brammar WJ, Smith M, Hawkins AR (1986) Structure and nucleotide sequence of the complex AROM locus of Aspergillus nidulans. Nucleic Acids Res 14:2201–2213

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Gasser CS, Winter JA, Hironaka CM, Shah DM (1988) Structure, expression and devolution of the 5-enol-pyruvyl-shikimate-3-phosphate synthase genes of Petunia and tomato. J Biol Chem 263:4280–4287

    PubMed  CAS  Google Scholar 

  14. Ream JE, Steinrcken HC, Porter CA, Sikorsky JA (1988) Purification and properties of 5-enol-pyruvyl-shikimate-3-phosphate synthase from dark-grown seedlings of Sorghum bicolor. Plant Physiol 87:232–238

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Forlanni G, Parisi B, Nielsen E (1994) 5-enol-pyruvyl-shikimate-3-phosphate synthase from Zea mays cultured cells. Plant Physiol 105:1107–1114

    Google Scholar 

  16. Xu JW, Feng DJ, Li XG, Chang TJ, Zhu Z (2002) Cloning of genomic DNA of rice 5-enolpyruvylshikimate-3-phosphate synthase gene and chromosomal localization of the gene. Sci. China 45:251–259

    Article  CAS  Google Scholar 

  17. Gong Y, Liao Z, Chen M, Guo B, Jin H, Sun X, Tang K (2006) Characterization of 5-enolpyruvylshikimate 3-phosphate synthase gene from Camptotheca acuminate. Biol Plant 50(4):542–550

    Article  CAS  Google Scholar 

  18. DeGennaro FP, Weller SC (1984) Differential sensitivity of field bindweed (Convolvulus arvensis) biotypes to glyphosate. Weed Sci 32:472–476

    CAS  Google Scholar 

  19. Cathala G, Savouret JF, Mendez B, West BL, Karin M, Martial JA, Baxter JD (1983) A method for isolation of intact, transcriptionally active ribonucleic acid. DNA 2:329–335

    Article  PubMed  CAS  Google Scholar 

  20. Tamura K et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  22. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Lescot M, Dehais P, Moreau Y, De Moor B, Rouze P, Rombauts S (2002) PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequence. Nucleic Acid Res 30:325–327

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Steinrücken HC, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94:1207–1212

    Article  PubMed  Google Scholar 

  25. Nandula VK, Reddy KN, Rimando AM, Duke SO, Poston DH (2007) Glyphosate-resistant and susceptible soybean (Glycine max) and canola (Brassica napus) dose–response and metabolism relationships with glyphosate. J Agric Food Chem 55:3540–3545

    Article  PubMed  Google Scholar 

  26. Yuan Chiou-Ing, Chaing Mou-Yen, Chen Yih-Ming (2002) Triple mechanisms of glyphosate-resistance in a naturally occurring glyphosate-resistant plant Dicliptera chinensis. Plant Sci 163:543–554

    Article  CAS  Google Scholar 

  27. Stallings WC, Abdel-Meguid SS, Lim LW, Shieh HS, Dayringer HE et al (1991) Structure and topological symmetry of the glyphosate target 5-enolpyruvylshikimate-3-phosphate synthase: a distinctive protein fold. Proc Natl Acad Sci USA 88:5046–5050

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Shah D, Horsch R, Klee H, Kishore G, Winter J, Turner N, Hironaka C, Sanders P, Gasser C, Aykent S, Siegal N, Rogers S, Fraley R (1986) Engineering herbicide tolerance in transgenic plants. Science 233:478–481

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Yuehui Chao from Institute of Animal Sciences, CAAS for assistance with transgenic plant culture and testing. We also appreciate the constructive and helpful comments on the manuscript from the editor and the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Xian Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, ZF., Zhang, CX., Huang, HJ. et al. Molecular cloning and characterization of 5-enolpyruvylshikimate-3-phosphate synthase gene from Convolvulus arvensis L.. Mol Biol Rep 41, 2077–2084 (2014). https://doi.org/10.1007/s11033-014-3056-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3056-2

Keywords

Navigation