Skip to main content
Log in

miRNA-375 promotes beta pancreatic differentiation in human induced pluripotent stem (hiPS) cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Islet transplantation is considered as an ultimate option for the treatment of type I diabetes. Human induced pluripotent stem cells (hiPSCs) have raised the possibility that patient-specific insulin-secreting cells might be derived from somatic cells through cell fate reprogramming. However, current protocols mostly rely on the use of several cytokines and inhibitors for directing differentiation towards pancreatic fate. Given the high manufacturing cost of these recombinant proteins, this approach is prohibitive for clinical applications. Knowing that microRNAs (miRNAs) are key players in various stages of pancreatic development, we present a novel and cost-effective strategy in which over-expression of miR-375 promotes pancreatic differentiation in hiPSCs in the absence of any other stimulator. We used a polycistronic viral vector expressing Sox2, Klf4, c-Myc, and Oct4 to drive hiPSCs from human foreskin fibroblasts. The established hiPSCs are similar to human embryonic stem cells in many aspects including morphology, passaging, surface and pluripotency markers, and gene expression. For differentiation induction, miR-375 was lentivirally overexpressed in these hiPSCs. Morphological assessment, immunocytochemistry, and expression analysis of islet marker genes confirmed that islet like cells were obtained in miR-375 transduced cells compared to controls. Our differentiated clusters secreted insulin in a glucose-dependant manner, showing in vitro functionality. We demonstrated for the first time that miRNAs might be ideal substitutes to induce pancreatic differentiation in hiPSCs. This work provides a new approach to study the role of miRNAs in pancreatic specification and increase the feasibility of using patient-specific iPSCs for beta cell replacement therapy for type I diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Godfrey KJ, Mathew B, Bulman JC, Shah O, Clement S, Gallicano GI (2012) Stem cell-based treatments for Type 1 diabetes mellitus: bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells. Diabet Med 29(1):14–23. doi:10.1111/j.1464-5491.2011.03433.x

    Article  PubMed  CAS  Google Scholar 

  2. Guo T, Hebrok M (2009) Stem cells to pancreatic beta-cells: new sources for diabetes cell therapy. Endocr Rev 30(3):214–227. doi:10.1210/er.2009-0004er.2009-0004

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Wen Y, Chen B, Ildstad ST (2011) Stem cell-based strategies for the treatment of type 1 diabetes mellitus. Expert Opin Biol Ther 11(1):41–53. doi:10.1517/14712598.2011.540235

    Article  PubMed Central  PubMed  Google Scholar 

  4. Zhang D, Jiang W, Shi Y, Deng H (2009) Generation of pancreatic islet cells from human embryonic stem cells. Sci China C Life Sci 52(7):615–621. doi:10.1007/s11427-009-0095-3

    Article  PubMed  Google Scholar 

  5. Drummond RJ, Kunath T, Mee PJ, Ross JA (2011) Induced pluripotent stem cell technology and stem cell therapy for diabetes. Exp Ther Med 2(1):3–7. doi:10.3892/etm.2010.173etm-02-01-0003

    PubMed Central  PubMed  Google Scholar 

  6. Jeon K, Lim H, Kim JH, Thuan NV, Park SH, Lim YM, Choi HY, Lee ER, Lee MS, Cho SG (2012) Differentiation and transplantation of functional pancreatic beta cells generated from induced pluripotent stem cells derived from a type 1 diabetes mouse model. Stem Cells Dev 21(14):2642–2655. doi:10.1089/scd 2011.0665

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Soejitno A, Prayudi PK (2011) The prospect of induced pluripotent stem cells for diabetes mellitus treatment. Ther Adv Endocrinol Metab 2(5):197–210. doi:10.1177/2042018811420198

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Kim SK, MacDonald RJ (2002) Signaling and transcriptional control of pancreatic organogenesis. Curr Opin Genet Dev 12(5):540–547

    Article  PubMed  CAS  Google Scholar 

  9. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24(11):1392–1401. doi:10.1038/nbt1259

    Article  PubMed  CAS  Google Scholar 

  10. Chen S, Borowiak M, Fox JL, Maehr R, Osafune K, Davidow L, Lam K, Peng LF, Schreiber SL, Rubin LL, Melton D (2009) A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol 5(4):258–265. doi:10.1038/nchembio.154

    Article  PubMed  CAS  Google Scholar 

  11. Jiang W, Shi Y, Zhao D, Chen S, Yong J, Zhang J, Qing T, Sun X, Zhang P, Ding M, Li D, Deng H (2007) In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res 17(4):333–344. doi:10.1038/cr.2007.28

    Article  PubMed  CAS  Google Scholar 

  12. Shi Y, Hou L, Tang F, Jiang W, Wang P, Ding M, Deng H (2005) Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-trans retinoic acid. Stem Cells 23(5):656–662. doi:10.1634/stemcells.2004-0241

    Article  PubMed  CAS  Google Scholar 

  13. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. doi:10.1038/nature02871

    Article  PubMed  CAS  Google Scholar 

  14. Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5(8):e203. doi:10.1371/journal.pbio.0050203

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, Zavolan M, Stoffel M (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA 106(14):5813–5818. doi:10.1073/pnas.0810550106

    Article  PubMed Central  PubMed  Google Scholar 

  16. Correa-Medina M, Bravo-Egana V, Rosero S, Ricordi C, Edlund H, Diez J, Pastori RL (2009) MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns 9(4):193–199. doi:10.1016/j.gep.2008.12.003

    Article  PubMed  CAS  Google Scholar 

  17. Joglekar MV, Joglekar VM, Hardikar AA (2009) Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 9(2):109–113. doi:10.1016/j.gep.2008.10.001

    Article  PubMed  CAS  Google Scholar 

  18. Hinton A, Afrikanova I, Wilson M, King CC, Maurer B, Yeo GW, Hayek A, Pasquinelli AE (2010) A distinct microRNA signature for definitive endoderm derived from human embryonic stem cells. Stem Cells Dev 19(6):797–807. doi:10.1089/scd2009.0224

    Article  PubMed  CAS  Google Scholar 

  19. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134(5):877–886. doi:10.1016/j.cell.2008.07.041

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Alipio Z, Liao W, Roemer EJ, Waner M, Fink LM, Ward DC, Ma Y (2010) Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc Natl Acad Sci USA 107(30):13426–13431. doi:10.1073/pnas.1007884107884107

    Article  PubMed Central  PubMed  Google Scholar 

  21. Zhu FF, Zhang PB, Zhang DH, Sui X, Yin M, Xiang TT, Shi Y, Ding MX, Deng H (2011) Generation of pancreatic insulin-producing cells from rhesus monkey induced pluripotent stem cells. Diabetologia 54(9):2325–2336. doi:10.1007/s00125-011-2246-x

    Article  PubMed  CAS  Google Scholar 

  22. Tateishi K, He J, Taranova O, Liang G, D’Alessio AC, Zhang Y (2008) Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 283(46):31601–31607. doi:10.1074/jbc.M806597200

    Article  PubMed  CAS  Google Scholar 

  23. Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, Shi Y, Deng H (2009) Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 19(4):429–438. doi:10.1038/cr.2009.28

    Article  PubMed  CAS  Google Scholar 

  24. Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel RL, Melton DA (2009) Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA 106(37):15768–15773. doi:10.1073/pnas.0906894106

    Article  PubMed Central  PubMed  Google Scholar 

  25. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432(7014):226–230. doi:10.1038/nature03076

    Article  PubMed  CAS  Google Scholar 

  26. Avnit-Sagi T, Kantorovich L, Kredo-Russo S, Hornstein E, Walker MD (2009) The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS One 4(4):e5033. doi:10.1371/journal.pone.0005033

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Rosero S, Bravo-Egana V, Jiang Z, Khuri S, Tsinoremas N, Klein D, Sabates E, Correa-Medina M, Ricordi C, Dominguez-Bendala J, Diez J, Pastori RL (2010) MicroRNA signature of the human developing pancreas. BMC Genomics 11:509. doi:10.1186/1471-2164-11-509 1471-2164-11-509 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Jiang J, Au M, Lu K, Eshpeter A, Korbutt G, Fisk G, Majumdar AS (2007) Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25(8):1940–1953. doi:10.1634/stemcells.2006-0761

    Article  PubMed  CAS  Google Scholar 

  29. Oliver-Krasinski JM, Stoffers DA (2008) On the origin of the beta cell. Genes Dev 22(15):1998–2021. doi:10.1101/gad.1670808

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Liew CG (2010) Generation of insulin-producing cells from pluripotent stem cells: from the selection of cell sources to the optimization of protocols. Rev Diabet Stud 7(2):82–92. doi:10.1900/RDS.2010.7.82

    Article  PubMed Central  PubMed  Google Scholar 

  31. Pan FC, Wright C (2011) Pancreas organogenesis: from bud to plexus to gland. Dev Dyn 240(3):530–565. doi:10.1002/dvdy.22584

    Article  PubMed  CAS  Google Scholar 

  32. Brandhorst H, Brandhorst D, Brendel MD, Hering BJ, Bretzel RG (1998) Assessment of intracellular insulin content during all steps of human islet isolation procedure. Cell Transpl 7(5):489–495

    Article  CAS  Google Scholar 

  33. Eizirik DL, Korbutt GS, Hellerstrom C (1992) Prolonged exposure of human pancreatic islets to high glucose concentrations in vitro impairs the beta-cell function. J Clin Invest 90(4):1263–1268. doi:10.1172/JCI115989

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Iranian Stem Cell Council and the Ministry of Science, I.R. Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Soleimani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahmy, R., Soleimani, M., Sanati, M.H. et al. miRNA-375 promotes beta pancreatic differentiation in human induced pluripotent stem (hiPS) cells. Mol Biol Rep 41, 2055–2066 (2014). https://doi.org/10.1007/s11033-014-3054-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3054-4

Keywords

Navigation