Skip to main content
Log in

Cold acclimation induces freezing tolerance via antioxidative enzymes, proline metabolism and gene expression changes in two chrysanthemum species

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cold acclimation is necessary for chrysanthemum to achieve its genetically determined maximum freezing tolerance, but the underlying physiological and molecular mechanisms are unclear. The aim of this study was to discover whether changes in antioxidative enzymes, proline metabolism and frost-related gene expression induced by cold acclimation are related to freezing tolerance. Our results showed that the semi-lethal temperature (LT50) decreased from −7.3 to −23.5 °C in Chrysanthemum dichrum and −2.1 to −7.1 °C in Chrysanthemum makinoi, respectively, after cold acclimation for 21 days. The activities of SOD, CAT and APX showed a rapid and transient increase in the two chrysanthemum species after 1 day of cold acclimation, followed by a gradual increase during the subsequent days and then stabilization. qRT-PCR analysis showed that the expression levels of some isozyme genes (Mn SOD, CAT and APX) were upregulated, which was consistent with the SOD, CAT and APX activities, while others remained relatively constant (Fe SOD and Cu/Zn SOD). P5CS and PDH expression were increased under cold acclimation and the level of P5CS presented similar trends as proline content, indicating proline accumulation was via P5CS and PDH cooperation. Cold acclimation also promoted DREB, COR413 and CSD gene expression. The activities of three enzymes and gene expression were higher in C. dichrum than in C. makinoi after cold acclimation. Our data suggested that cold-inducible freezing-tolerance could be attributed to higher activity of antioxidant enzymes, and increased proline content and frost-related gene expression during different periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chinnusamy V, Zhu JK, Sunkar R (2010) Gene regulation during cold stress acclimation in plants. Methods Mol Biol 639:39–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhu J, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10:290–295

    Article  CAS  PubMed  Google Scholar 

  3. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  4. Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175

    Article  CAS  PubMed  Google Scholar 

  5. Dai F, Huang Y, Zhou M, Zhang G (2009) The influence of cold acclimation on antioxidative enzymes and antioxidants in sensitive and tolerant barley cultivars. Biol Plant 53:257–262

    Article  CAS  Google Scholar 

  6. Janda T, Szalai G, Rios-Gonzalez K, Veisz O, Páldi E (2003) Comparative study of frost tolerance and antioxidant activity in cereals. Plant Sci 164:301–306

    Article  CAS  Google Scholar 

  7. Soltész A, Tímár I, Vashegyi I, Tóth B, Kellős T, Szalai G, Vágújfalvi A, Kocsy G, Galiba G (2011) Redox changes during cold acclimation affect freezing tolerance but not the vegetative/reproductive transition of the shoot apex in wheat. Plant Biol 13:757–766

    Article  PubMed  Google Scholar 

  8. Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90:1629–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang YJ, Wisniewski M, Meilan R, Cui MG, Webb R, Fuchigami L (2005) Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J Am Soc Hortic Sci 130:167–173

    CAS  Google Scholar 

  10. Kasuga J, Arakawa K, Fujikawa S (2007) High accumulation of soluble sugars in deep supercooling Japanese white birch xylem parenchyma cells. New Phytol 174:569–579

    Article  CAS  PubMed  Google Scholar 

  11. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  12. Kovacs Z, Simon-Sarkadi L, Sovany C, Kirsch K, Galiba G, Kocsy G (2011) Differential effects of cold acclimation and abscisic acid on free amino acid composition in wheat. Plant Sci 180:61–68

    Article  CAS  PubMed  Google Scholar 

  13. Ruiz JM, Sanchez E, Garcia PC, Lopez-Lefebre LR, Rivero RM, Romero L (2002) Proline metabolism and NAD kinase activity in greenbean plants subjected to cold-shock. Phytochemistry 59:473–478

    Article  CAS  PubMed  Google Scholar 

  14. Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9:230–249

    Article  CAS  PubMed  Google Scholar 

  15. Zhao T, Liang D, Wang P, Liu J, Ma F (2012) Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress. Mol Genet Genomics 287:423–436

    Article  CAS  PubMed  Google Scholar 

  16. Breton G, Danyluk J, Charron JB, Sarhan F (2003) Expression profiling and bioinformatic analyses of a novel stress-regulated multispanning transmembrane protein family from cereals and Arabidopsis. Plant Physiol 132:64–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Okawa K, Nakayama K, Kakizaki T, Yamashita T, Inaba T (2008) Identification and characterization of Cor413im proteins as novel components of the chloroplast inner envelope. Plant Cell Environ 31:1470–1483

    Article  CAS  PubMed  Google Scholar 

  18. Kim MH, Sasaki K, Imai R (2009) Cold shock domain protein 3 regulates freezing tolerance in Arabidopsis thaliana. J Biol Chem 284:23454–23460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chaikam V, Karlson D (2008) Functional characterization of two cold shock domain proteins from Oryza sativa. Plant Cell Environ 31:995–1006

    Article  CAS  PubMed  Google Scholar 

  20. Karlson D, Nakaminami K, Toyomasu T, Imai R (2002) A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. J Biol Chem 277:35248–35256

    Article  CAS  PubMed  Google Scholar 

  21. Xu Y, Chen FD (2008) The LT50 and Cold Tolerance Adaptability of Chrysanthemum During a natural drop in temperature. Acta Horticulturae 35:559–564

    Google Scholar 

  22. Chen L, Chen Y, Jiang J, Chen S, Chen F, Guan Z, Fang W (2012) The constitutive expression of Chrysanthemum dichrum ICE1 in Chrysanthemum grandiflorum improves the level of low temperature, salinity and drought tolerance. Plant Cell Rep 31:1747–1758

    Article  CAS  PubMed  Google Scholar 

  23. Yin D, Chen S, Chen F, Guan Z, Fang W (2009) Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. Environ Exp Bot 67:87–93

    Article  CAS  Google Scholar 

  24. Deng YM, Chen SM, Chen FD, Cheng X, Zhang F (2011) The embryo rescue derived intergeneric hybrid between chrysanthemum and Ajania przewalskii shows enhanced cold tolerance. Plant Cell Rep 30:2177–2186

    Article  CAS  PubMed  Google Scholar 

  25. Gu C, Chen S, Liu Z, Shan H, Luo H, Guan Z, Chen F (2011) Reference gene selection for quantitative real-time PCR in Chrysanthemum subjected to biotic and abiotic stress. Mol Biotechnol 49:192–197

    Article  CAS  PubMed  Google Scholar 

  26. Janska A, Marsik P, Zelenkova S, Ovesna J (2010) Cold stress and acclimation—what is important for metabolic adjustment? Plant Biol 12:395–405

    Article  CAS  PubMed  Google Scholar 

  27. Sarhadi E, Mahfoozi S, Hosseini SA, Salekdeh GH (2010) Cold acclimation proteome analysis reveals close link between the up-regulation of low-temperature associated proteins and vernalization fulfillment. J Proteome Res 9:5658–5667

    Article  CAS  PubMed  Google Scholar 

  28. Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kosová K, Tom Prásil I, Prásilová P, Vítámvás P, Chrpová J (2010) The development of frost tolerance and DHN5 protein accumulation in barley (Hordeum vulgare) doubled haploid lines derived from Atlas 68×Igri cross during cold acclimation. J Plant Physiol 167:343–350

    Article  PubMed  Google Scholar 

  30. Turan O, Ekmekci Y (2011) Activities of photosystem II and antioxidant enzymes in chickpea (Cicer arietinum L.) cultivars exposed to chilling temperatures. Acta Physiol Plant 33:67–78

    Article  CAS  Google Scholar 

  31. Zhang Y, Luo Y, Hou YX, Jiang H, Chen Q, Tang HR (2008) Chilling acclimation induced changes in the distribution of H2O2 and antioxidant system of strawberry leaves. Agric J 3:286–291

    Google Scholar 

  32. Carapetian J, Yadeghari LZ, Heidari R (2008) Cold pretreatment-induced changes in antioxidant enzyme activities and relative water content and soluble sugars in shoots and roots of soybean seedlings. Res J Biol Sci 3:68–73

    Google Scholar 

  33. Hu W, Song X, Shi K, Xia X, Zhou Y, Yu J (2008) Changes in electron transport, superoxide dismutase and ascorbate peroxidase isoenzymes in chloroplasts and mitochondria of cucumber leaves as influenced by chilling. Photosynthetica 46:581–588

    Article  CAS  Google Scholar 

  34. Lei L, Lin SZ, Zheng HQ, Lei Y, Zhang Q, Zhang Z (2007) The role of antioxidant system in freezing acclimation-induced freezing resistance of Populus suaveolens cuttings. For stud China 9:107–113

    Article  CAS  Google Scholar 

  35. Wang X, Peng YH, Singer JW, Fessehaie A, Krebs SI, Arora R (2009) Seasonal changes in photosynthesis, antioxidant systems and ELIP expression in a thermonastic and non-thermonastic Rhododendron species: a comparison of photoprotective strategies in overwintering plants. Plant Sci 177:607–617

    Article  CAS  Google Scholar 

  36. Baek K-H, Skinner DZ (2003) Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Sci 165:1221–1227

    Article  CAS  Google Scholar 

  37. Vanlerberghe GC, McIntosh L (1992) Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco. Plant Physiol 100:115–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lukoševičiūtė V, Rugienius R, Sasnauskas A, Stanys V, Bobinas C (2009) Impact of exogenous sucrose, raffinose and proline on cold acclimation of strawberry in vitro. Acta Hortic 839:203–208

    Google Scholar 

  39. Rai VK (2002) Role of amino acids in plant responses to stresses. Biol Plant 45:481–487

    Article  CAS  Google Scholar 

  40. Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  41. Zhang XZ, Wang KH, Ervin EH, Waltz C, Murphy T (2011) Metabolic changes during cold acclimation and deacclimation in five bermudagrass varieties. I. Proline, total amino acid, protein, and dehydrin expression. Crop Sci 51:838–846

    Article  CAS  Google Scholar 

  42. Hur J, Jung KH, Lee CH, An GH (2004) Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Sci 167:417–426

    Article  CAS  Google Scholar 

  43. Dibax R, Deschamps C, Bespalhok JC, Vieira LGE, Molinari HBC, De Campos MKF, Quoirin M (2010) Organogenesis and Agrobacterium tumefaciens-mediated transformation of Eucalyptus saligna with P5CS gene. Biol Plant 54:6–12

    Article  Google Scholar 

  44. Liu L, Zhu K, Yang Y, Wu J, Chen F, Yu D (2008) Molecular cloning, expression profiling and trans-activation property studies of a DREB2-like gene from chrysanthemum (Dendranthema vestitum). J Plant Res 121:215–226

    Article  CAS  PubMed  Google Scholar 

  45. Tong Z, Hong B, Yang Y, Li Q, Ma N, Ma C, Gao J (2009) Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis. Plant Mol Biol 71:115–129

    Article  CAS  PubMed  Google Scholar 

  46. Yang Y, Wu J, Zhu K, Liu L, Chen F, Yu D (2009) Identification and characterization of two chrysanthemum (Dendronthema x moriforlium) DREB genes, belonging to the AP2/EREBP family. Mol Biol Rep 36:71–81

    Article  CAS  PubMed  Google Scholar 

  47. Chen Y, Chen S, Chen F, Li P, Chen L, Guan Z, Chang Q (2012) Functional Characterization of a Chrysanthemum dichrum Stress-Related Promoter. Mol Biotechnol 52:161–169

    Article  CAS  PubMed  Google Scholar 

  48. Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602

    Article  CAS  PubMed  Google Scholar 

  49. Yang W, Liu XD, Chi XJ, Wu CA, Li YZ, Song LL, Liu XM, Wang YF, Wang FW, Zhang CA, Liu Y, Zong JM, Li HY (2011) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233:219–229

    Article  CAS  PubMed  Google Scholar 

  50. Kwak KJ, Park SJ, Han JH, Kim MK, Oh SH, Han YS, Kang H (2011) Structural determinants crucial to the RNA chaperone activity of glycine-rich RNA-binding proteins 4 and 7 in Arabidopsis thaliana during the cold adaptation process. J Exp Bot 62:4003–4011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Park SJ, Kwak KJ, Oh TR, Kim YO, Kang H (2009) Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol 50:869–878

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by the Fundamental Research Funds for the Central Universities (KYZ201112), the Program for New Century Excellent Talents in University of Chinese Ministry of Education (Grant No. NCET-10-0492) (NCET-10-0492), the National Natural Science Foundation of China (Grant No. 31071825), Sci-Tech Support Plan of Jiangsu Province (BE2009317, BE2011325), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Jiang, J., Chang, Q. et al. Cold acclimation induces freezing tolerance via antioxidative enzymes, proline metabolism and gene expression changes in two chrysanthemum species. Mol Biol Rep 41, 815–822 (2014). https://doi.org/10.1007/s11033-013-2921-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2921-8

Keywords

Navigation