Skip to main content
Log in

Upregulation of microRNA-146a was not accompanied by downregulation of pro-inflammatory markers in diabetic kidney

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The present study was designed to evaluate whether microRNA-146a and its adapter proteins (TRAF6 and IRAK1) are involved in the pathogenesis of diabetes-induced kidney damage. Male Sprague–Dawley rats were divided into control and diabetic groups (n = 6 in each). Diabetes was induced by injection of streptozotocin (55 mg/kg; i.p.) in 12 h fasted rats. Diabetic kidney damage was diagnosed by renal hypertrophy, thickened glomerular basement membrane, widened filtration slits, mesangial expansion, as well as by elevated levels of blood urea and creatinine in diabetic rats 2 months after induction of diabetes. While the expression of NF-κB mRNA and miR-146a were increased in diabetic kidney compared to the sham controls (p < 0.01 for both comparisons), the mRNA levels of IRAK1 and TRAF6 did not statistically reduce. The NF-κB activity and the concentrations of TNF-α, IL-6 and IL-1β in the kidney of diabetic rats were higher than the kidney of controls (p < 0.05 for TNF-α and NF-κB; p < 0.01 for IL-6 and IL-1β). Our results indicate that the upregulation of miR-146a was not accompanied by downregulation of inflammatory mediators in diabetic kidney. It is possible that a defect in the miR-146a-mediated negative loop provides a situation for sustained activation of NF-κB and its targets to promote cells toward abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Luis-Rodríguez D, Martínez-Castelao A, Górriz JL, De-Álvaro F, Navarro-González JF (2012) Pathophysiological role and therapeutic implications of inflammation in diabetic nephropathy. World J Diabetes 15:7–18. doi:10.4239/wjd.v3.i1.7

    Article  Google Scholar 

  2. Zhou X, Wang B, Zhu L, Hao S (2012) A novel improved therapy strategy for diabetic nephropathy: targeting AGEs. Organogenesis 1:18–21. doi:10.4161/org.19332

    Article  Google Scholar 

  3. Palsamy P, Subramanian S (2010) Ameliorative potential of resveratrol on proinflammatory cytokines, hyperglycemia mediated oxidative stress, and pancreatic β-cell dysfunction in streptozotocin-nicotinamide-induced diabetic rats. J Cell Physiol 224:423–432. doi:10.1002/jcp.22138

    Article  PubMed  CAS  Google Scholar 

  4. Palsamy P, Subramanian S (2011) Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta 1812:719–731. doi:10.1016/j.bbadis.2011.03.008

    Article  PubMed  CAS  Google Scholar 

  5. Sanz AB, Sanchez-Niño MD, Ramos AM, Moreno JA, Santamaria B, Ruiz-Ortega M, Egido J, Ortiz A (2010) NF-kappaB in renal inflammation. J Am Soc Nephrol 21:1254–1262. doi:10.1681/ASN.2010020218

    Article  PubMed  CAS  Google Scholar 

  6. Patel S, Santani D (2009) Role of NF-kappa B in the pathogenesis of diabetes and its associated complications. Pharmacol Rep 61:595–603

    PubMed  CAS  Google Scholar 

  7. Ma X, Becker Buscaglia LE, Barker JR, Li Y (2011) MicroRNAs in NF-kappaB signaling. J Mol Cell Biol 3:159–166. doi:10.1093/jmcb/mjr007

    Article  PubMed  CAS  Google Scholar 

  8. Rusca N, Monticelli S (2011) MiR-146a in immunity and disease. Mol Biol Int 2011:437301. doi:10.4061/2011/437301

    PubMed  Google Scholar 

  9. Balasubramanyam M, Aravind S, Gokulakrishnan K, Prabu P, Sathishkumar C, Ranjani H, Mohan V (2011) Impaired miR-146a expression links subclinical inflammation and insulin resistance in type 2 diabetes. Mol Cell Biochem 351:197–205. doi:10.1007/s11010-011-0727-3

    Article  PubMed  CAS  Google Scholar 

  10. Feng B, Chen S, McArthur K, Wu Y, Sen S, Ding Q, Feldman RD, Chakrabarti S (2011) miR-146a-Mediated extracellular matrix protein production in chronic diabetes complications. Diabetes 60:2975–2984. doi:10.2337/db11-0478

    Article  PubMed  CAS  Google Scholar 

  11. Wang G, Kwan BC, Lai FM, Chow KM, Li PK, Szeto CC (2011) Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy. Dis Markers 1:171–179. doi:10.3233/DMA-2011-0766

    Article  Google Scholar 

  12. Ichii O, Otsuka S, Sasaki N, Namiki Y, Hashimoto Y, Kon Y (2012) Altered expression of microRNA miR-146a correlates with the development of chronic renal inflammation. Kidney Int 81:280–292. doi:10.1038/ki.2011.345

    Article  PubMed  CAS  Google Scholar 

  13. Yar AS, Menevse S, Alp E, Helvacioglu F, Take G (2010) The effects of resveratrol on cyclooxygenase-1 and cyclooxygenase-2 mRNA and protein levels in diabetic rat kidneys. Mol Biol Rep 37:2323–2331. doi:10.1007/s11033-009-9737-6

    Article  PubMed  CAS  Google Scholar 

  14. Arora MK, Reddy K, Balakumar P (2010) The low dose combination of fenofibrate and rosiglitazone halts the progression of diabetes-induced experimental nephropathy. Eur J Pharmacol 636:137–144. doi:10.1016/j.ejphar.2010.03.002

    Article  PubMed  CAS  Google Scholar 

  15. Tikoo K, Singh K, Kabra D, Sharma V, Gaikwad A (2008) Change in histone H3 phosphorylation, MAP kinase p38, SIR 2 and p53 expression by resveratrol in preventing streptozotocin induced type I diabetic nephropathy. Free Radic Res 42:397–404. doi:10.1080/10715760801998646

    Article  PubMed  CAS  Google Scholar 

  16. Lässer C, Eldh M, Lötvall J (2012) Isolation and characterization of RNA-containing exosomes. J Vis Exp 59:e3037. doi:10.3791/3037

    PubMed  Google Scholar 

  17. Biyashev D, Veliceasa D, Topczewski J, Topczewska JM, Mizgirev I, Vinokour E, Reddi AL, Licht JD, Revskoy SY, Volpert OV (2012) miR-27b controls venous specification and tip cell fate. Blood 119:2679–2687. doi:10.1182/blood-2011-07-370635

    Article  PubMed  CAS  Google Scholar 

  18. Fink T, Lund P, Pilgaard L, Rasmussen JG, Duroux M, Zachar V (2008) Instability of standard PCR reference genes in adipose-derived stem cells during propagation, differentiation and hypoxic exposure. BMC Mol Biol 9:98. doi:10.1186/1471-2199-9-98

    Article  PubMed  Google Scholar 

  19. Peltier HJ, Latham GJ (2008) Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 14:844–852. doi:10.1261/rna.939908

    Article  PubMed  CAS  Google Scholar 

  20. Wu CC, Sytwu HK, Lin YF (2012) Cytokines in diabetic nephropathy. Adv Clin Chem 56:55–74. doi:10.1016/B978-0-12-394317-0.00014-5

    Article  PubMed  CAS  Google Scholar 

  21. Leung KK, Leung PS (2008) Effects of hyperglycemia on angiotensin II receptor type 1 expression and insulin secretion in an INS-1E pancreatic beta-cell line. JOP 9:290–299

    PubMed  Google Scholar 

  22. Willemsen JM, Westerink JW, Dallinga-Thie GM, van Zonneveld AJ, Gaillard CA, Rabelink TJ, de Koning EJ (2007) Angiotensin II type 1 receptor blockade improves hyperglycemia-induced endothelial dysfunction and reduces proinflammatory cytokine release from leukocytes. J Cardiovasc Pharmacol 49:6–12. doi:10.1097/FJC.0b013e31802b31a7

    Article  PubMed  CAS  Google Scholar 

  23. Thomson SC, Deng A, Bao D, Satriano J, Blantz RC, Vallon V (2001) Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes. J Clin Invest 107:217–224. doi:10.1172/JCI10963

    Article  PubMed  CAS  Google Scholar 

  24. Lovis P, Roggli E, Laybutt DR, Gattesco S, Yang JY, Widmann C, Abderrahmani A, Regazzi R (2008) Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57:2728–2736. doi:10.2337/db07-1252

    Article  PubMed  CAS  Google Scholar 

  25. Zilahi E, Tarr T, Papp G, Griger Z, Sipka S, Zeher M (2012) Increased microRNA-146a/b, TRAF6 gene and decreased IRAK1 gene expressions in the peripheral mononuclear cells of patients with Sjögren’s syndrome. Immunol Lett 141:165–168. doi:10.1016/j.imlet.2011.09.006

    Article  PubMed  CAS  Google Scholar 

  26. Liu Z, Xiao B, Tang B, Li B, Li N, Zhu E, Guo G, Gu J, Zhuang Y, Liu X, Ding H, Zhao X, Guo H, Mao X, Zou Q (2010) Up-regulated microRNA-146a negatively modulate Helicobacter pylori-induced inflammatory response in human gastric epithelial cells. Microbes Infect 12:854–863. doi:10.1016/j.micinf.2010.06.002

    Article  PubMed  CAS  Google Scholar 

  27. Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P, Regazzi R (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59:978–986. doi:10.2337/db09-0881

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Grant of this study was supported by Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. Our data in this work were derived from the thesis of Ms. Nasibeh Yousefzadeh for a Master of Science degree in physiology (thesis serial number: 90/2-1/1).

Conflict of interest

The authors have declared that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Ghadiri Soufi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alipour, M.R., Khamaneh, A.M., Yousefzadeh, N. et al. Upregulation of microRNA-146a was not accompanied by downregulation of pro-inflammatory markers in diabetic kidney. Mol Biol Rep 40, 6477–6483 (2013). https://doi.org/10.1007/s11033-013-2763-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2763-4

Keywords

Navigation