Skip to main content

Evaluation of tumor suppressor gene expressions and aberrant methylation in the colon of cancer-induced rats: a pilot study

Abstract

Altered expression and methylation pattern of tumor suppressor and DNA repair genes, in particular involved in mismatch repair (MMR) pathway, frequently occur in primary colorectal (CRC) tumors. However, little is known about (epi)genetic changes of these genes in precancerous and early stages of CRC. The aim of this pilot study was to analyze expression profile and promoter methylation status of important tumor suppressor and DNA repair genes in the early stages of experimentally induced colorectal carcinogenesis. Rats were treated with azoxymethane (AOM), dextran sodium sulphate (DSS) or with their combination, and sacrificed 1 or 4 months post-treatment period. The down-regulation of Apc expression in left colon, detectable in animals treated with DSS–AOM and sacrificed 1 month after the end of treatment, represents most early marker of the experimental colorectal carcinogenesis. Significantly reduced gene expressions were also found in 5 out of 7 studied MMR genes (Mlh1, Mlh3, Msh3 Pms1, Pms2), regarding the sequential administration of DSS–AOM at 4 months since the treatment. Strong down-regulation was also discovered for Apc, Apex1, Mgmt and TP53. Tumors developed in rectum-sigmoid region displayed significantly lower Apc and Pms2 expressions. The decreased expression of studied genes was not in any case associated with aberrant methylation of promoter region. Present data suggest that down-regulation of Apc and MMR genes are prerequisite for the development of CRC. In this study we addressed for the first time early functional alterations of tumor suppressor genes with underlying epigenetic mechanisms in experimentally induced CRC in rats.

This is a preview of subscription content, access via your institution.

References

  1. Schnekenburger M, Diederich M (2012) Epigenetics offer new horizons for colorectal cancer prevention. Curr Colorectal Cancer Rep 8(1):66–81. doi:10.1007/s11888-011-0116-z116

    PubMed  Article  Google Scholar 

  2. Tang NP, Wu YM, Wang B, Ma J (2010) Systematic review and meta-analysis of the association between P53 codon 72 polymorphism and colorectal cancer. Eur J Surg Oncol 36(5):431–438. doi:10.1016/j.ejso.2010.03.010

    PubMed  Article  Google Scholar 

  3. Takayama T, Miyanishi K, Hayashi T, Sato Y, Niitsu Y (2006) Colorectal cancer: genetics of development and metastasis. J Gastroenterol 41(3):185–192. doi:10.1007/s00535-006-1801-6

    PubMed  Article  CAS  Google Scholar 

  4. Worthley DL, Whitehall VL, Spring KJ, Leggett BA (2007) Colorectal carcinogenesis: road maps to cancer. World J Gastroenterol 13(28):3784–3791

    PubMed  CAS  Google Scholar 

  5. Birnbaum DJ, Laibe S, Ferrari A, Lagarde A, Fabre AJ, Monges G, Birnbaum D, Olschwang S (2012) Expression profiles in stage II colon cancer according to APC gene status. Transl Oncol 5(2):72–76

    PubMed  Google Scholar 

  6. Borinstein SC, Conerly M, Dzieciatkowski S, Biswas S, Washington MK, Trobridge P, Henikoff S, Grady WM (2010) Aberrant DNA methylation occurs in colon neoplasms arising in the azoxymethane colon cancer model. Mol Carcinog 49(1):94–103. doi:10.1002/mc.20581

    PubMed  CAS  Google Scholar 

  7. Rashid A, Shen L, Morris JS, Issa JP, Hamilton SR (2001) CpG island methylation in colorectal adenomas. Am J Pathol 159(3):1129–1135. doi:S0002-9440(10)61789-0

    PubMed  Article  CAS  Google Scholar 

  8. Lijinsky W, Saavedra JE, Reuber MD (1985) Organ-specific carcinogenesis in rats by methyl and ethylazoxyalkanes. Cancer Res 45(1):76–79

    PubMed  CAS  Google Scholar 

  9. Itzkowitz SH, Yio X (2004) Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol 287(1):G7–G17. doi:10.1152/ajpgi.00079.2004

    PubMed  Article  CAS  Google Scholar 

  10. Rosenberg DW, Giardina C, Tanaka T (2009) Mouse models for the study of colon carcinogenesis. Carcinogenesis 30(2):183–196. doi:10.1093/carcin/bgn267

    PubMed  Article  CAS  Google Scholar 

  11. Tanaka T, de Azevedo MB, Duran N, Alderete JB, Epifano F, Genovese S, Tanaka M, Curini M (2010) Colorectal cancer chemoprevention by 2 beta-cyclodextrin inclusion compounds of auraptene and 4′-geranyloxyferulic acid. Int J Cancer 126(4):830–840. doi:10.1002/ijc.24833

    PubMed  CAS  Google Scholar 

  12. Vetuschi A, Latella G, Sferra R, Caprilli R, Gaudio E (2002) Increased proliferation and apoptosis of colonic epithelial cells in dextran sulfate sodium-induced colitis in rats. Dig Dis Sci 47(7):1447–1457

    PubMed  Article  Google Scholar 

  13. Lin Z, Hegarty JP, Cappel JA, Yu W, Chen X, Faber P, Wang Y, Kelly AA, Poritz LS, Peterson BZ, Schreiber S, Fan JB, Koltun WA (2011) Identification of disease-associated DNA methylation in intestinal tissues from patients with inflammatory bowel disease. Clin Genet 80(1):59–67. doi:10.1111/j.1399-0004.2010.01546.x

    PubMed  Article  CAS  Google Scholar 

  14. Macejova D, Brtko J (2001) Chemically induced carcinogenesis: a comparison of 1-methyl-1-nitrosourea, 7,12-dimethylbenzanthracene, diethylnitroso-amine and azoxymethan models (minireview). Endocr Regul 35(1):53–59

    PubMed  CAS  Google Scholar 

  15. Vannucci L, Fiserova A, Horvath O, Rossmann P, Mosca F, Pospisil M (2004) Cancer evolution and immunity in a rat colorectal carcinogenesis model. Int J Oncol 25(4):973–981

    PubMed  Google Scholar 

  16. Vannucci L, Stepankova R, Kozakova H, Fiserova A, Rossmann P, Tlaskalova-Hogenova H (2008) Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int J Oncol 32(3):609–617

    PubMed  Google Scholar 

  17. Petko Z, Ghiassi M, Shuber A, Gorham J, Smalley W, Washington MK, Schultenover S, Gautam S, Markowitz SD, Grady WM (2005) Aberrantly methylated CDKN2A, MGMT, and MLH1 in colon polyps and in fecal DNA from patients with colorectal polyps. Clin Cancer Res 11(3):1203–1209. doi:11/3/1203

    PubMed  CAS  Google Scholar 

  18. Bustin SA (2010) Why the need for qPCR publication guidelines? The case for MIQE. Methods 50(4):217–226. doi:10.1016/j.ymeth.2009.12.006

    PubMed  Article  CAS  Google Scholar 

  19. Feinberg AP (2005) A genetic approach to cancer epigenetics. Cold Spring Harb Symp Quant Biol 70:335–341. doi:10.1101/sqb.2005.70.027

    PubMed  Article  CAS  Google Scholar 

  20. Valentin MD, da Silva FC, dos Santos EM, Lisboa BG, de Oliveira LP, Ferreira Fde O, Gomy I, Nakagawa WT, Aguiar Junior S, Redal M, Vaccaro C, Valle AD, Sarroca C, Carraro DM, Rossi BM (2011) Characterization of germline mutations of MLH1 and MSH2 in unrelated south American suspected Lynch syndrome individuals. Fam Cancer 10(4):641–647. doi:10.1007/s10689-011-9461-y

    PubMed  Article  CAS  Google Scholar 

  21. Albuquerque C, Baltazar C, Filipe B, Penha F, Pereira T, Smits R, Cravo M, Lage P, Fidalgo P, Claro I, Rodrigues P, Veiga I, Ramos JS, Fonseca I, Leitao CN, Fodde R (2010) Colorectal cancers show distinct mutation spectra in members of the canonical WNT signaling pathway according to their anatomical location and type of genetic instability. Genes Chromosomes Cancer 49(8):746–759. doi:10.1002/gcc.20786

    PubMed  Article  CAS  Google Scholar 

  22. Sun J (2010) Enteric bacteria and cancer stem cells. Cancers (Basel) 3(1):285–297. doi:10.3390/cancers3010285

    Google Scholar 

  23. Esteller M, Sparks A, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, Gonzalez S, Tarafa G, Sidransky D, Meltzer SJ, Baylin SB, Herman JG (2000) Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res 60(16):4366–4371

    PubMed  CAS  Google Scholar 

  24. Hosoya K, Yamashita S, Ando T, Nakajima T, Itoh F, Ushijima T (2009) Adenomatous polyposis coli 1A is likely to be methylated as a passenger in human gastric carcinogenesis. Cancer Lett 285(2):182–189. doi:10.1016/j.canlet.2009.05.016

    PubMed  Article  CAS  Google Scholar 

  25. Amos-Landgraf JM, Clipson L, Newton MA, Dove WF (2012) The many ways to open the gate to colon cancer. Cell Cycle 11(7):1261–1262. doi:10.4161/cc.19888

    PubMed  Article  CAS  Google Scholar 

  26. Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361(25):2449–2460. doi:10.1056/NEJMra0804588

    PubMed  Article  CAS  Google Scholar 

  27. Svrcek M, El-Bchiri J, Chalastanis A, Capel E, Dumont S, Buhard O, Oliveira C, Seruca R, Bossard C, Mosnier JF, Berger F, Leteurtre E, Lavergne-Slove A, Chenard MP, Hamelin R, Cosnes J, Beaugerie L, Tiret E, Duval A, Flejou JF (2007) Specific clinical and biological features characterize inflammatory bowel disease associated colorectal cancers showing microsatellite instability. J Clin Oncol 25(27):4231–4238. doi:10.1200/JCO.2007.10.9744

    PubMed  Article  CAS  Google Scholar 

  28. Ullman TA, Itzkowitz SH (2011) Intestinal inflammation and cancer. Gastroenterology 140(6):1807–1816. doi:10.1053/j.gastro.2011.01.057

    PubMed  Article  CAS  Google Scholar 

  29. Miladi-Abdennadher I, Abdelmaksoud-Damak R, Ayadi L, Khabir A, Amouri A, Frikha F, Ellouz S, Frikha M, Sellami-Boudawara T, Mokdad-Gargouri R (2011) Expression of p16INK4a, alone or combined with p53, is predictive of better prognosis in colorectal adenocarcinoma in Tunisian patients. Appl Immunohistochem Mol Morphol 19(6):562–568. doi:10.1097/PAI.0b013e3182143380

    PubMed  Article  CAS  Google Scholar 

  30. van Wezel T, Middeldorp A, Wijnen JT, Morreau H (2011) A review of the genetic background and tumour profiling in familial colorectal cancer. Mutagenesis 27(2):239–245. doi:10.1093/mutage/ger071

    Article  Google Scholar 

  31. Perraud A, Akil H, Nouaille M, Petit D, Labrousse F, Jauberteau MO, Mathonnet M (2011) Expression of p53 and DR5 in normal and malignant tissues of colorectal cancer: correlation with advanced stages. Oncol Rep 26(5):1091–1097. doi:10.3892/or.2011.1404

    PubMed  Google Scholar 

  32. Kristensen LS, Nielsen HM, Hansen LL (2009) Epigenetics and cancer treatment. Eur J Pharmacol 625(1–3):131–142. doi:10.1016/j.ejphar.2009.10.011

    PubMed  Article  Google Scholar 

  33. Nilsson TK, Lof-Ohlin ZM, Sun XF (2013) DNA methylation of the p14ARF, RASSF1A and APC1A genes as an independent prognostic factor in colorectal cancer patients. Int J Oncol 42(1):127–133. doi:10.3892/ijo.2012.1682

    PubMed  CAS  Google Scholar 

  34. Maia L, Dinis J, Cravo M, Claro I, Baltazar C, Fonseca I, Veloso T, Capelinha AF, Carneiro F, Nobre-Leitao C (2005) Who takes the lead in the development of ulcerative colitis-associated colorectal cancers: mutator, suppressor, or methylator pathway? Cancer Genet Cytogenet 162(1):68–73. doi:10.1016/j.cancergencyto.2005.02.017

    PubMed  Article  CAS  Google Scholar 

  35. Sanchez JA, Dejulius KL, Bronner M, Church JM, Kalady MF (2011) Relative role of methylator and tumor suppressor pathways in ulcerative colitis-associated colon cancer. Inflamm Bowel Dis 17(9):1966–1970. doi:10.1002/ibd.21526

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The study was supported by grant GAAV IAA500200917, IRC MBU RVO 61388971 and for IEM, GA CR P304/11/P715, AVOZ50390703, AVOZ 50390512 and AV0Z50520701.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Vodicka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Polakova Vymetalkova, V., Vannucci, L., Korenkova, V. et al. Evaluation of tumor suppressor gene expressions and aberrant methylation in the colon of cancer-induced rats: a pilot study. Mol Biol Rep 40, 5921–5929 (2013). https://doi.org/10.1007/s11033-013-2699-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2699-8

Keywords

  • Colorectal cancer
  • Rats
  • mRNA expression
  • Mismatch repair genes
  • Promoter methylation