Skip to main content
Log in

Effects of ischemic preconditioning on myocardium Caspase-3, SOCS-1, SOCS-3, TNF-α and IL-6 mRNA expression levels in myocardium IR rats

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The aim of this study was to characterise the effects of ischemic preconditioning (IP) on heart function parameters (ΔST and ΔT), activities of serum creatine kinase (CK), lactate dehydrogenase (LDH), and levels of serum nitric oxide (NO), malondialdehyde (MDA), and myocardium Caspase-3 mRNA, SOCS-1, SOCS-3, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) expression levels and Apoptosis index in myocardium IR rats. Results showed that ΔST and ΔST values in IP group were markedly lower than those in IR group. Compared with IR group, IP significantly (p < 0.01) decreased serum CK (0.83 ± 0.09 vs 1.36 ± 0.15), LDH (5613 ± 462 vs 7106 ± 492) activities and MDA (11.32 ± 1.05 vs 15.49 ± 1.26) level, increased the serum NO (86.39 ± 7.03 vs 53.77 ± 4.27) level in IR group. The IP induced a significant decreased in myocardium Caspase-3 mRNA (0.303 ± 0.021 vs 0.515 ± 0.022) gene expression (p < 0.01) compared to IR model group. The IP induced a significant decreased in myocardium SOCS-1 (0.241 ± 0.031 vs 0.596 ± 0.036), SOCS-3 (0.258 ± 0.031 vs 0.713 ± 0.057), TNF-α (0.137 ± 0.011 vs 0.427 ± 0.035) and IL-6 (0.314 ± 0.021 vs 0.719 ± 0.064) mRNA gene expression (p < 0.01) compared to IR model group. We conclude that IP is effective in the therapy of heart disease. These findings may have implications for the clinical development of preconditioning-based therapies for ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maxwell SR, Lip GY (1997) Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options. Int J Cardiol 58(2):95–117

    Article  PubMed  CAS  Google Scholar 

  2. Eltzschig HK, Collard CD (2004) Vascular ischaemia and reperfusion injury. Brit Med Bull 70:71–86

    Article  PubMed  CAS  Google Scholar 

  3. Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3:e442

    Article  PubMed  Google Scholar 

  4. Buja LM, Vela D (2008) Cardiomyocyte death and renewal in the normal and diseased heart. Cardiovasc Pathol 17:349–374

    Article  PubMed  Google Scholar 

  5. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Article  PubMed  CAS  Google Scholar 

  6. Ottani F, Galvani M, Ferrini D, Sorbello F, Limonetti P, Pantoli D, Rusticali F (1995) Prodromal angina limits infarct size. A role for ischemic preconditioning. Circulation 91(2):291–297

    Article  PubMed  CAS  Google Scholar 

  7. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135

    Article  PubMed  CAS  Google Scholar 

  8. Turer AT, Hill JA (2010) Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol 106:360–368

    Article  PubMed  Google Scholar 

  9. Yellon DM, Alkhulaifi AM, Pugsley WB (1993) Preconditioning the human myocardium. Lancet 342:276–277

    Article  PubMed  CAS  Google Scholar 

  10. Rossoni G, Manfredi B, Civelli M, Berti F, Razzetti R (2008) Combined simvastatin–manidipine protect against ischemia–reperfusion injury in isolated hearts from normocholesterolemic rats. Eur J Pharmacol 587:224–230

    Article  PubMed  CAS  Google Scholar 

  11. Przyklenk K, Kloner RA (1998) Ischemic preconditioning: exploring the paradox. Prog Cardiovasc Dis 40:517–547

    Article  PubMed  CAS  Google Scholar 

  12. DeFily DV, Chilian WM (1993) Preconditioning protects coronary arteriolar endothelium from ischemia–reperfusion injury. Am J Physiol 265:H700–H706

    PubMed  CAS  Google Scholar 

  13. Richard V, Kaeffer N, Tron C, Thuillez C (1994) Ischemic preconditioning protects against coronary endothelial dysfunction induced by ischemia and reperfusion. Circulation 89:1254–1261

    Article  PubMed  CAS  Google Scholar 

  14. Beresewicz A, Czarnowska E, Maczewski M (1998) Ischemic preconditioning and superoxide dismutase protect against endothelial dysfunction and endothelium glycocalyx disruption in the postischemic guinea-pig hearts. Mol Cell Biochem 186:87–92

    Article  PubMed  CAS  Google Scholar 

  15. Kharbanda RK, Peters M, Walton B, Kattenhorn M, Mullen M, Klein N, Vallance P, Deanfield J, MacAllister R (2001) Ischemic preconditioning prevents endothelial injury and systemic neutrophil activation during ischemia–reperfusion in humans in vivo. Circulation 103:1624–1630

    Article  PubMed  CAS  Google Scholar 

  16. McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. New Eng J Med 312:159–163

    Article  PubMed  CAS  Google Scholar 

  17. Giraldez RR, Panda A, Xia Y, Sanders SP, Zweier JL (1997) Decreased nitric-oxide synthase activity causes impaired endothelium-dependent relaxation in the postischemic heart. J Biol Chem 34:21420–21426

    Article  Google Scholar 

  18. Wang L, Cherednichenko G, Hernandez L, Halow J, Camacho SA, Figueredo V, Schaefer S (2001) Preconditioning limits mitochondrial Ca2+ during ischemia in rat hearts: role of KATP channels. Am. J. Physiol Heart Circ. Physiol 280:H2321–H2328

    PubMed  CAS  Google Scholar 

  19. Antman EM, Braunwald E (1997) Acute myocardial infarction. In: Braunwald E (ed) Heart disease, a textbook of cardiovascular medicine, 5th edn. WB Saunders & Co, Philadelphia, pp 1184–1188

    Google Scholar 

  20. Kaur H, Parikh V, Sharma A, Singh M (1997) Effect of amiloride a Na+/H+ exchange inhibitor on cardioprotective effect of ischemic preconditioning: possible involvement of resident cardiac mast cells. Pharmacol Res 36:95–102

    Article  PubMed  CAS  Google Scholar 

  21. Ribeiro SP, Villar J, Slutsky AS (1995) Induction of the stress response to prevent organ injury. New Horiz 3:301–311

    PubMed  CAS  Google Scholar 

  22. Benjamin IJ, McMillan DR (1998) Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res 83:117–132

    Article  PubMed  CAS  Google Scholar 

  23. De Maio A (1999) Heat shock proteins: facts, thoughts, and dreams. Shock 11:1–12

    Article  PubMed  Google Scholar 

  24. Morrison AL, Dinges M, Singleton KD, Odoms K, Wong HR, Wischmeyer PE (2006) Glutamine’s protection against cellular injury is dependent on heat shock factor-1. Am J Physiol Cell Physiol 290:1625–1632

    Article  Google Scholar 

  25. Schroeder S, Lindemann C, Hoeft A, Putensen C, Decker D, von Ruecker AA, Stuber F (1999) Impaired inducibility of heat shock protein 70 in peripheral blood lymphocytes of patients with severe sepsis. Crit Care Med 27:1080–1084

    Article  PubMed  CAS  Google Scholar 

  26. Villar J, Ribeiro SP, Mullen JB, Kuliszewski M, Post M, Slutsky AS (1994) Induction of the heat shock response reduces mortality rate and organ damage in a sepsis-induced acute lung injury model. Crit Care Med 22:914–921

    Article  PubMed  CAS  Google Scholar 

  27. Yang RC, Wang CI, Chen HW, Chou FP, Lue SI, Hwang KP (1998) Heat shock treatment decreases the mortality of sepsis in rats. Kaohsiung J Med Sci 14:664–672

    PubMed  CAS  Google Scholar 

  28. Pittet JF, Lee H, Morabito D, Howard MB, Welch WJ, Mackersie RC (2002) Serum levels of Hsp 72 measured early after trauma correlate with survival. J Trauma 52:611–617

    Article  PubMed  Google Scholar 

  29. Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    PubMed  CAS  Google Scholar 

  30. Huot J, Houle F, Spitz DR, Landry J (1996) HSP27 phosphorylation- mediated resistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res 56:273–279

    PubMed  CAS  Google Scholar 

  31. Lavoie JN, Hickey E, Weber LA, Landry J (1993) Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J Biol Chem 268:24210–24214

    PubMed  CAS  Google Scholar 

  32. Mehlen P, Mehlen A, Godet J, Arrigo AP (1997) Hsp27 as a switch between differentiation and apoptosis in murine embryonic stem cells. J Biol Chem 272:31657–31665

    Article  PubMed  CAS  Google Scholar 

  33. Mehlen P, Schulze-Osthoff K, Arrigo AP (1996) Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1-and staurosporine-induced cell death. J Biol Chem 271:16510–16514

    Article  PubMed  CAS  Google Scholar 

  34. Samali A, Cotter TG (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223:163–170

    Article  PubMed  CAS  Google Scholar 

  35. Costigan M, Mannion RJ, Kendall G, Lewis SE, Campagna JA, Coggeshall RE, Meridith-Middleton J, Tate S, Woolf CJ (1998) Heat shock protein 27: developmental regulation and expression after peripheral nerve injury. J Neurosci 18:5891–5900

    PubMed  CAS  Google Scholar 

  36. Plumier JC, Hopkins DA, Robertson HA, Currie RW (1997) Constitutive expression of the 27-kDa heat shock protein (Hsp27) in sensory and motor neurons of the rat nervous system. J Comp Neurol 384:409–428

    Article  PubMed  CAS  Google Scholar 

  37. Hopkins DA, Plumier JC, Currie RW (1998) Induction of the 27-kDa heat shock protein (Hsp27) in the rat medulla oblongata after vagus nerve injury. Exp Neurol 153:173–183

    Article  PubMed  CAS  Google Scholar 

  38. Imura T, Shimohama S, Sato M, Nishikawa H, Madono K, Akaike A, Kimura J (1999) Differential expression of small heat shock proteins in reactive astrocytes after focal ischemia: possible role of beta-adrenergic receptor. J Neurosci 19:9768–9779

    PubMed  CAS  Google Scholar 

  39. Han J, Lee JD, Bibbs L, Ulevitch RJ (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265(5173):808–811

    Article  PubMed  CAS  Google Scholar 

  40. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372(6508):739–746

    Article  PubMed  CAS  Google Scholar 

  41. Bokemeyer D, Lindemann M, Kramer HJ (1998) Regulation of mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle cells. Hypertension 32:661–667

    Article  PubMed  CAS  Google Scholar 

  42. Begum N, Ragolia L (2000) High glucose and insulin inhibit VSMC MKP-1 expression by blocking iNos via p38 MAPK activation. Am J Physiol Cell Physiol 278:C81–C91

    PubMed  CAS  Google Scholar 

  43. Ohashi H, Matsumori A, Furukawa Y, Ono K, Okada M, Iwasaki A, Miyamoto T, Nakano A, Sasayama S (2000) Role of p38 mitogen activated protein kinase in neointimal hyperplasia after vascular injury. Arterioscler Thromb Vasc Biol 20:2521–2526

    Article  PubMed  CAS  Google Scholar 

  44. Soonpaa MH, Field LJ (1998) Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 83:15–26

    Article  PubMed  CAS  Google Scholar 

  45. Dorn GW 2nd (2009) Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodeling. Cardiovasc Res 15(81):465–473

    Google Scholar 

  46. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P (1997) Apoptosis in the failing human heart. N Engl J Med 336:1131–1141

    Article  PubMed  CAS  Google Scholar 

  47. Graham SH, Chen J (2001) Programmed cell death in cerebral ischemia (review). J Cereb Blood Flow Metab 21:99–109

    Article  PubMed  CAS  Google Scholar 

  48. Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ, Yuan J, Moskowitz MA (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18:3659–3668

    PubMed  CAS  Google Scholar 

  49. Zhu C, Wang X, Hagberg H, Blomgren K (2000) Correlation between caspase-3 activation and three different markers of DNA damage in neonatal cerebral hypoxia–ischemia. J Neurochem 75:819–829

    Article  PubMed  CAS  Google Scholar 

  50. Hara H, Friedlander RM, Gagliardini V, Ayata C, Fink K, Huang Z, Shimizu-Sasamata M, Yuan J, Moskowitz MA (1997) Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci USA 94:2007–2012

    Article  PubMed  CAS  Google Scholar 

  51. De Malefyt RW, Abrams J, Bennett B, Figdor CG, de Vries JE (1991) Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174:1209–1220

    Article  Google Scholar 

  52. Meng ZH, Dyer K, Billiar TR, Tweardy DJ (2001) Essential role for IL-6 in postresuscitation inflammation in hemorrhagic shock. Am J Physiol Cell Physiol 280:C343–C351

    PubMed  CAS  Google Scholar 

  53. Yamauchi-Takihara K, Ihara Y, Ogata A, Yoshizaki K, Azuma J, Kishimoto T (1995) Hypoxic stress induces cardiac myocyte-derived interleukin-6. Circulation 91:1520–1524

    Article  PubMed  CAS  Google Scholar 

  54. O’Neill PJ, Ayala A, Wang P, Ba ZF, Morrison MH, Schultze AE, Reich SS, Chaudry IH (1994) Role of kupffer cells in interleukin-6 release following trauma-hemorrhage and resuscitation. Shock 1:43–47

    Article  PubMed  Google Scholar 

  55. Ancey C, Corbi P, Froger J, Delwail A, Wijdenes J, Gascan H, Potreau D, Lecron JC (2002) Secretion of IL-6, IL-11 and LIF by human cardiomyocytes in primary culture. Cytokine 18:199–205

    Article  PubMed  CAS  Google Scholar 

  56. Deten A, Volz HC, Briest W, Zimmer HG (2002) Cardiac cytokine expression is upregulated in the acute phase after myocardial infarction. Experimental studies in rats. Cardiovasc Res 55:329–340

    Article  PubMed  CAS  Google Scholar 

  57. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257:387–389

    Article  PubMed  CAS  Google Scholar 

  58. Testa M, Yeh M, Lee P, Fanelli R, Loperfido F, Berman JW, LeJemtel TH (1996) Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol 28:964–971

    Article  PubMed  CAS  Google Scholar 

  59. Shouda T, Yoshida T, Hanada T, Wakioka T, Oishi M, Miyoshi K, Komiya S, Kosai K, Hanakawa Y, Hashimoto K, Nagata K, Yoshimura A (2001) Induction of the cytokine signal regulator SOCS3/CIS3 as a therapeutic strategy for treating inflammatory arthritis. J Clin Invest 108:1781–1788

    PubMed  CAS  Google Scholar 

  60. Suzuki A, Hanada T, Mitsuyama K, Yoshida T, Kamizono S, Hoshino T, Kubo M, Yamashita A, Okabe M, Takeda K, Akira S, Matsumoto S, Toyonaga A, Sata M, Yoshimura A (2001) CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J Exp Med 193:471–481

    Article  PubMed  CAS  Google Scholar 

  61. Jin X, Zhang Z, Beer-Stolz D, Zimmers TA, Koniaris LG (2007) Interleukin-6 inhibits oxidative injury and necrosis after extreme liver resection. Hepatology 46:802–812

    Article  PubMed  CAS  Google Scholar 

  62. Yoshimura A, Naka T, Kubo M (2007) SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 7:454–465

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Qiao, Z. & Xu, B. Effects of ischemic preconditioning on myocardium Caspase-3, SOCS-1, SOCS-3, TNF-α and IL-6 mRNA expression levels in myocardium IR rats. Mol Biol Rep 40, 5741–5748 (2013). https://doi.org/10.1007/s11033-013-2677-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2677-1

Keywords

Navigation