Skip to main content

Cloning, in silico characterization and induction of TiKpp2 MAP kinase in Tilletia indica under the influence of host factor(s) from wheat spikes

Abstract

In order to understand the molecular mechanism(s) associated with floret specificity, morphogenetic and disease development of Karnal bunt (KB) pathogen in wheat spikes, host factor(s) was isolated from KB prone susceptible stage of wheat spikes. An orthologue of Kpp2 gene involved in pheromone response and fungal development was isolated from Tilletia indica for analyzing its role in fungal development. The maximum expression of TiKpp2 gene was observed at 14th day and decreased thereafter. To investigate whether the fungus alters the expression levels of same kinase upon interaction with plants, T. indica cultures were treated with 1 % of host factor(s). Such treatment induced the expression of TiKpp2 gene in time dependent manner. Host factor(s) treatment tends to increase the myelination in fungal cultures by lowering the sporidial production. Increase in myelination led to impose more pathogenicity levels in the host and prolific multiplication of pathogen inside host causing more damage to developing grains. In silico characterization and protein–protein interaction studies further suggests that isolated gene showed similarity with Ustilago maydis Kpp2 and induction of TiKpp2 might further activate a downstream transcription factor Prf1. The results of present study clearly suggest that host factor(s) derived from wheat spikes provide certain signal(s) which activate TiKpp2 gene during morphogenetic development of T. indica and affect the fungal growth and pathogenicity. In turn it also provides a plausible explanation for floret specificity of KB fungus in wheat.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References:

  1. 1.

    Sekhon KS, Saxena AK, Randhawa SK, Gill SS (1980) Effect of Karnal bunt disease on quality characteristics of wheat. Bull Grain Technol 18(3):208–212

    Google Scholar 

  2. 2.

    Gewin V (2003) Bioterrorism: agricultural shock. Nature 421:106–108

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Kumar A, Singh US, Singh A, Malik VS, Garg GK (2000) Molecular signaling in pathogenicity and host recognition in smut fungi taking Karnal bunt as a model system. Indian J Exp Biol 38:96

    Google Scholar 

  4. 4.

    Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180

    PubMed  CAS  Google Scholar 

  5. 5.

    Chang L, Karin M (2001) Mammalian MAP kinase signaling cascades. Nature 410:37–40

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Dangi S, Chen FM, Shapiro P (2006) Activation of extracellular signal regulated kinase (ERK) in G2 phase delays mitotic entry through p21CIP1. Cell Prolif 39:261–279

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Torii S, Yamamoto T, Tsuchiya Y, Nishida E (2006) ERK MAP Kinase in G cell cycle progression and cancer. Cancer Sci 97:697–702

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Kennedy NJ, Davis RJ (2003) Role of JNK in tumor development. Cell Cycle 2:199–201

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Puri PL, Wu Z, Zhang P, Wood LD, Bhakta KS, Han J, Feramisco JR, Karin M, wang JY (2000) Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells. Genes Dev 14:574–584

    PubMed  CAS  Google Scholar 

  10. 10.

    Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA 93:11274–11279

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Ashwell JD (2006) The many paths to p38 mitogen-activated protein kinase activation in the immune system. Nat Rev Immunol 6:532–540

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Herskowitz I (1995) MAP kinase pathways in yeast: for mating and more. Cell 80:187–197

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Triesman R (1996) Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol 8:205–215

    Article  Google Scholar 

  14. 14.

    Kultz D (1998) Phylogenetic and functional classification of mitogen and stress activated protein kinases. J Mol Evol 46:571–588

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Lev Sophie, Sharon Amir, Hadar Ruthi, Ma Hong, Horwitz Benjamin A (1999) A mitogen–activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation and pathogenicity: diverse roles for mitogen-activated protein kinase homologous in foliar pathogens. PNAS 96(23):13542–13547

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Xu JR (2000) MAP kinases in fungal pathogens. Fungal Genet Biol 31:137–152

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Bastian Kramer, Eckhard Thines, Foster Andrew J (2009) MAP kinase signalling pathway components and targets conserved between the distantly related plant pathogenic fungi Mycosphaerella graminicola and Magnaporthe grisea. Fungal Genet Biol 46:667–681

    Article  Google Scholar 

  18. 18.

    Gupta, A. K., Seneviratne, J. M., Joshi, G. K., and Kumar, A. (2012) Induction of MAP kinase homologues during morphogenetic development and pathogenesis of Karnal bunt (Tilletia indica) under the influence of host factor(s) from wheat spikes. Sci World J. doi:10.1100/2012/539583

  19. 19.

    Muller P, Weinzierl G, Brachmann A, Feldbrugge M, Kahmann R (2003) Mating and pathogenic development of the Smut fungus Ustilago maydis are regulated by one mitogen-activated protein kinase cascade. Eukaryot Cell 2:1187–1199

    PubMed  Article  Google Scholar 

  20. 20.

    Manish Rana, Arora Charu, Ram Basant, Kumar Anil (2001) Floral specificity of Karnal bunt infection due to presence of fungal growth-promotory activity in wheat Spikes. J Plant Biol 28(3):283–290

    Google Scholar 

  21. 21.

    Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res 8:4321–4325

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Seneviratne JM, Gupta AK, Pandey D, Sharma I, Kumar A (2009) Determination of genetic divergence based on DNA markers amongst monosporidial strains derived from fungal isolates of Karnal bunt of wheat. Plant Pathol J. 25:303–316

    Article  CAS  Google Scholar 

  23. 23.

    Sambrook J, Fritch EF, Maniatis T (1989) Molecular cloning a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, p 1959

    Google Scholar 

  24. 24.

    Tamura K et al (2007) MEGA4, molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H (2000) The protein data bank. Nucleic Acids Res 28:235–242

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  27. 27.

    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 −∆∆CT method. Methods 25:402–408

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Krishna A, Singh RA (1983) Cytology of teliospore germination and development in neovossia indica, the incitant of Karnal bunt of wheat. Indian Phytopathol 36:115–123

    Google Scholar 

  29. 29.

    Geeta Rai, Anil Kumar, Singh A, Garg GK (2000) Modulation of antigenicity of mycelia antigens during developmental cycle of Karnal bunt (Tilletia indica) of wheat. Indian J Exp Biol 38:488–492

    Google Scholar 

  30. 30.

    Kaffarnik F, Muller P, Leibundgut M, Kahmann R, Feldbrugge M (2003) PKA and MAPK phosphorylation of Prf1 allows promoter discrimination in Ustilago maydis. EMBO J 22:5817–5826

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Taylor SS, Buechler JA, Yonemoto W (1990) cAMP dependent protein kinase : framework for a diverse family of regulatory enzymes. Annu Rev Biochem 59:971–1005

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Hartmann HA, Kruger J, Lottspeich F, Kahmann R (1999) Environmental signals controlling sexual development of the corn smut fungus Ustilago maydis through the transcriptional regulator Prf1. Plant Cell 11:1293–1305

    PubMed  CAS  Google Scholar 

  33. 33.

    Martin JP, Liuva SC, Sgarlata C, Para IF, Mielnichuk N, Torreblanca J, Carbo N (2006) Pathocycles: ustilago maydis as a model to study the relationships between cell cycle and virulence in pathogenic fungi. Mol Gen Genomics 276:211–229

    Article  Google Scholar 

  34. 34.

    Anil Kumar, Kaushlendra Tripathi, Manish Rana, Shalini Purwar, Garg GK (2004) Dibutyryl c-AMP as an inducer of sporidia formation: biochemical and antigenic changes during morphological differentiation of Karnal butn (Tilletia indica) pathogen in axenic culture. J Biosci 29(1):23–31

    Article  Google Scholar 

Download references

Acknowledgement:

The authors acknowledge the Department of Science and Technology (DST), India for providing financial support at G.B. Pant University of Agriculture and Technology, Pantnagar (Grant No. SR/SO/PS-83/2005 dated 20/12/2007).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 71 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gupta, A.K., Joshi, G.K., Seneviratne, J.M. et al. Cloning, in silico characterization and induction of TiKpp2 MAP kinase in Tilletia indica under the influence of host factor(s) from wheat spikes. Mol Biol Rep 40, 4967–4978 (2013). https://doi.org/10.1007/s11033-013-2597-0

Download citation

Keywords

  • Karnal bunt
  • T. indica
  • MAP kinase
  • TiKpp2
  • Prf1
  • Host factors
  • qRT-PCR