Molecular Biology Reports

, Volume 40, Issue 8, pp 4843–4849 | Cite as

Polymorphic genetic variation in immune system genes: a study of two populations of Espirito Santo, Brazil

  • Raquel Spinassé Dettogni
  • Ricardo Tristão Sá
  • Thaís Tristão Tovar
  • Iúri Drumond Louro
Article

Abstract

Mapping single nucleotide polymorphisms (SNPs) in genes potentially involved in immune responses may help understand the pathophysiology of infectious diseases in specific geographical regions. In this context, we have aimed to analyze the frequency of immunogenetic markers, focusing on genes CD209 (SNP -336A/G), FCγRIIa (SNP -131H/R), TNF-α (SNP -308A/G) and VDR (SNP Taq I) in two populations of the Espirito Santo State (ES), Brazil: general and Pomeranian populations. Peripheral blood genomic DNA was extracted from one hundred healthy individuals of the general population and from 59 Pomeranians. Polymorphic variant identification was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR–RFLP). SNP genotype frequencies were in Hardy–Weinberg Equilibrium. There was no statistically significant difference in allelic and genotypic distributions between the two populations studied. Statistically significant differences were observed for SNP genotype distribution in genes CD209, TNF-α and VDR when comparing the ES populations with other Brazilian populations. This is the first report of CD209, FcγRIIa, TNF-α and VDR allelic frequencies for the general and Pomeranian populations of ES.

Keywords

Polymorphisms Immune system Infectious diseases Espirito Santo-Brazil 

References

  1. 1.
    Loke H, Bethell D, Phuong CXT et al (2002) Susceptibility to dengue hemorrhagic fever in Vietnam: evidence of an association with variation in the vitamin D receptor and Fcγ receptor IIA genes. Am J Trop Med Hyg 67:102–106PubMedGoogle Scholar
  2. 2.
    Yee AMF, Phan HM, Zuniga R et al (2000) Association between FcγRIIa-R131 allotype and bacteremic pneumococcal pneumonia. Clin Infect Dis 30:25–28PubMedCrossRefGoogle Scholar
  3. 3.
    Aucan C, Traore Y, Tall F et al (2000) High immunoglobulin G2 (IgG2) and low IgG4 levels are associated with human resistance to Plasmodium falciparum malaria. Infec Immun 68:1252–1258CrossRefGoogle Scholar
  4. 4.
    Omi K, Ohashi J, Patarapotikul J et al (2002) Fcγ receptor IIA and IIIB polymorphisms are associated with susceptibility to cerebral malaria. Parasitol Int 51:361–366CrossRefGoogle Scholar
  5. 5.
    Shi YP, Nahlen BL, Kariuki S et al (2001) Fcg receptor IIa (CD32) polymorphism is associated with protection of infants against high-density Plasmodium falciparum infection. J Infect Dis 184:107–111PubMedCrossRefGoogle Scholar
  6. 6.
    Boin F, Zanardini R, Piolo R et al (2001) Association between G308A tumor necrosis factor alpha gene polymorphism and schizophrenia. Mol Psychiatry 6:79–82PubMedCrossRefGoogle Scholar
  7. 7.
    Garcia G, Sierra B, Perez AB et al (2010) Asymptomatic dengue infection in a Cuban population confirms the protective role of the RR variant of the FcgammaRIIa polymorphism. Am J Trop Med Hyg 82:1153–1156PubMedCrossRefGoogle Scholar
  8. 8.
    Sakuntabhai A, Turbpaiboon C, Casademont I et al (2005) A variant in the CD209 promoter is associated with severity of dengue disease. Nat Genet 37:507–513PubMedCrossRefGoogle Scholar
  9. 9.
    Cambi A, Gijzen K, de Vries JM et al (2003) The C type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur J Immunol 33:532–538CrossRefGoogle Scholar
  10. 10.
    Rappocciolo G, Jenkins FJ, Hensler HR et al (2006) DCSIGN is a receptor for human herpes virus 8 on dendritic cells and macrophages. J Immunol 176:1741–1749PubMedGoogle Scholar
  11. 11.
    Tassaneetrithep B, Burgess TH, Granelli-Piperno A et al (2003) DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197:823–829PubMedCrossRefGoogle Scholar
  12. 12.
    Rinaldo CR Jr, Piazza P (2004) Virus infection of dendritic cells: portal for host invasion and host defense. Trends Microbiol 12:337–345PubMedCrossRefGoogle Scholar
  13. 13.
    Halary F, Amara A, Lortat-Jacob H et al (2002) Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans infection. Immunity 17:653–664PubMedCrossRefGoogle Scholar
  14. 14.
    Klimstra WB, Nangle EM, Smith MS et al (2003) DC-SIGN and L-SIGN can act as attachment receptors for alphaviruses and distinguish between mosquito cell and mammalian cell-derived viruses. J Virol 77:12022–12032PubMedCrossRefGoogle Scholar
  15. 15.
    Tailleux L, Schwartz O, Herrmann JL et al (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197:121–127PubMedCrossRefGoogle Scholar
  16. 16.
    Van Kooyk Y, Appelmelk B, Geijtenbeek TB (2003) A fatal attraction: mycobacterium tuberculosis and HIV-1 target DC-SIGN to escape immune surveillance. Trends Mol Med 9:153–159PubMedCrossRefGoogle Scholar
  17. 17.
    Yang ZY, Huang Y, Ganesh L et al (2004) pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DCSIGN. J Virol 78:5642–5650PubMedCrossRefGoogle Scholar
  18. 18.
    Martin MP, Lederman MM, Hutcheson HB et al (2004) Association of DC-SIGN promoter polymorphism with increased risk for parenteral, but not mucosal, acquisition of human immunodeficiency virus type 1 infection. J Virol 78:14053–14056PubMedCrossRefGoogle Scholar
  19. 19.
    Barreiro LB, Neyrolles O, Babb CL et al (2006) Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis. PLoS Med 3:e20. doi:10.137/journal.pmed.0030020 PubMedCrossRefGoogle Scholar
  20. 20.
    Ryan EJ, Dring M, Ryan CM et al (2010) Variant in CD209 promoter is associated with severity of liver disease in chronic hepatitis C virus infection. Hum Immunol 71:829–832PubMedCrossRefGoogle Scholar
  21. 21.
    Van der Pol WL, Van de Winkel JGJ (1998) IgG receptor polymorphisms: risk factors for disease. Immunogenetics 48:222–232PubMedCrossRefGoogle Scholar
  22. 22.
    Bazilio AP, Viana VST, Toledo R et al (2004) FcγRIIa polymorphism: a susceptibility factor for immune complex-mediated lupus nephritis in Brazilian patients. Nephrol Dial Transplant 19:1427–1431PubMedCrossRefGoogle Scholar
  23. 23.
    Brouwer KC, Lal RB, Mirel LB et al (2004) Polymorphism of Fc receptor IIa for IgG in infants is associated with susceptibility to perinatal HIV-1 infection. AIDS 18:1187–1194PubMedCrossRefGoogle Scholar
  24. 24.
    Platonov AE, Shipulin GA, Vershinina IV et al (1998) Association of human Fc gamma RIIa (CD32) polymorphism with susceptibility to and severity of meningococcal disease. Clin Infect Dis 27:746–750PubMedCrossRefGoogle Scholar
  25. 25.
    Yuan FF, Wong M, Pererva N et al (2003) FcgammaRIIA polymorphisms in Streptococcus pneumoniae infection. Immunol Cell Biol 81:192–195PubMedCrossRefGoogle Scholar
  26. 26.
    Bossuyt X, Moens L, Van Hoeyveld E et al (2007) Coexistence of (partial) immune defects and risk of recurrent respiratory infections. Clin Chem 53:1124–1130CrossRefGoogle Scholar
  27. 27.
    Cooke G, Aucan C, Walley AJ et al (2003) Association of Fcgamma receptor IIa (CD32) polymorphism with severe Malaria in West Africa. Am J Trop Hyg 69:565–568Google Scholar
  28. 28.
    Malinin NL, Boldin MP, Kovalenko AV et al (1997) MAP3 K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature 385:540–544PubMedCrossRefGoogle Scholar
  29. 29.
    Wilson AG, Symons JA, McDowell TL et al (1994) Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci 94:3195–3199CrossRefGoogle Scholar
  30. 30.
    Czaja AJ, Cookson S, Constantini PK et al (1999) Cytokine polymorphisms associated with clinical features and treatment outcome in type 1 autoimmune hepatitis. Gastroenterology 117:645–652PubMedCrossRefGoogle Scholar
  31. 31.
    Knight JC, Udalova I, Hill AV et al (1999) A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria. Nat Genet 22:145–150PubMedCrossRefGoogle Scholar
  32. 32.
    Li Kam Wa TC, Mansur AH, Britton J et al (1999) Association between -308 tumor necrosis factor promoter polymorphism and bronchial hyper reactivity in asthma. Clin Exp Allergy 29:1204–1208PubMedCrossRefGoogle Scholar
  33. 33.
    Mira JP, Cariou A, Grall F et al (1999) Association of TNF2, a TNF-alpha promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. JAMA 282:561–568PubMedCrossRefGoogle Scholar
  34. 34.
    Rood MJ, van Krugten MV, Zanelli E et al (2000) TNF-308A and HLA-DR3 alleles contribute independently to susceptibility to systemic lupus erythematous. Arthritis Rheum 43:129–134PubMedCrossRefGoogle Scholar
  35. 35.
    MacDonald PN, Dowd DR, Haussler MR (1994) New insight into the structure and functions of the vitamin D receptor. Semin Nephrol 14:101–118PubMedGoogle Scholar
  36. 36.
    Gennari L, Becherini L, Masi L et al (1997) Vitamin D receptor genotypes and intestinal calcium absorption in postmenopausal women. Calcified tissue Int 61:460–463CrossRefGoogle Scholar
  37. 37.
    Bellamy R, Ruwende C, Corrah T et al (1999) Tuberculosis and chronic hepatitis virus infection in Africans and variation in the vitamin D receptor gene. J Infect Dis 179:721–724PubMedCrossRefGoogle Scholar
  38. 38.
    Roy S, Frodsham A, Saha B et al (1999) Association of vitamin D receptor genotype with leprosy type. J Infect Dis 179:187–191PubMedCrossRefGoogle Scholar
  39. 39.
    Jiang XM, Arepally G, Poncz M et al (1996) Rapid detection of the Fc gamma RIIA-H/R 131 ligand-binding polymorphism using an allele-specific restriction enzyme digestion (ASRED). J Immunol Methods 199:55–59PubMedCrossRefGoogle Scholar
  40. 40.
    Wilson AG, di Giovine FS, Blakemore AI et al (1992) Single base polymorphism in the human tumor necrosis factor alpha (TNF alpha) gene detectable by Ncol restriction of PCR product. Hum Mol Genet 1:353PubMedCrossRefGoogle Scholar
  41. 41.
    Hennig BJW, Parkhill JM, Chapple ILC et al (1999) Association of a vitamin D receptor gene polymorphism with localized early-onset periodontal diseases. J Periodontol 70:1032–1038PubMedCrossRefGoogle Scholar
  42. 42.
    Stur E, Silveira NA, Selvatici LS et al (2012) Polymorphism Analysis of MTHFR, Factor II and Factor V genes in the Pomeranian population of Espirito Santo-Brazil. Genet Test Mol Biomarkers 16:219–222PubMedCrossRefGoogle Scholar
  43. 43.
    Wang L, Chen R-F, Liu J-W et al (2011) DC-SIGN (CD209) Promoter 2336 A/G Polymorphism Is Associated with Dengue Hemorrhagic Fever and Correlated to DC-SIGN Expression and Immune Augmentation. PLoS Negl Trop Dis 5:e934. doi:10.1371/jornal.pntd.0000934 PubMedCrossRefGoogle Scholar
  44. 44.
    Kashima S, Rodrigues ES, Azevedo R et al (2009) DC-SIGN (CD209) gene promoter polymorphisms in a Brazilian population and their association with human T-cell lymphotropic virus type 1 infection. J Gen Virol 90:927–934PubMedCrossRefGoogle Scholar
  45. 45.
    Lehrnbecher T, Foster CB, Zhu S et al (1999) Variant genotypes of the low affinity Fc gamma Receptors in two control populations and a review of low affinity receptor polymorphisms in control and disease population. Blood 94:4220–4232PubMedGoogle Scholar
  46. 46.
    Witte JS, Palmer LJ, O’Connor RD et al (2002) Relation between tumor necrosis factor polymorphism TNFa-308 and risk of asthma. Eur J Hum Genet 10:82–85PubMedCrossRefGoogle Scholar
  47. 47.
    Moreira PR, Costa JE, Gomez RS et al (2009) TNFA and IL10 gene polymorphisms are not associated with periodontitis in brazilians. Open Dent J 3:184–190PubMedCrossRefGoogle Scholar
  48. 48.
    Bhanushali AA, Laipal N, Kulkarni SS et al (2009) Frequency of fokI and taqI polymorphism of vitamin D receptor gene in Indian population and its association with 25 hydroxyvitamin D levels. Indian J Hum Genet 15:108–113PubMedCrossRefGoogle Scholar
  49. 49.
    Bezerra FF, Cabello GMK, Mendonça LMC et al (2008) Bone mass and breast milk calcium concentration are associated with vitamin D. J Nutr 138:277–281PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Raquel Spinassé Dettogni
    • 1
  • Ricardo Tristão Sá
    • 2
  • Thaís Tristão Tovar
    • 1
  • Iúri Drumond Louro
    • 1
  1. 1.Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Centro de Ciências Humanas e NaturaisUniversidade Federal do Espírito SantoVitóriaBrazil
  2. 2.Departamento de Clínica MédicaEscola Superior de Ciências da Santa Casa de Misericórdia de VitóriaVitóriaBrazil

Personalised recommendations